Modal Logic

Eric Pacuit, University of Maryland

October 16, 2023

1

Modal Proof Theory

- ✓ Natural deduction: $\Gamma \vdash_{\mathbf{K}}^{nd} \varphi$ means that there is a natural deduction proof where the last line is φ where φ is not in the scope of a subproof and all the assumptions in the proof are from Γ .
- ✓ Sequents: $\Gamma \vdash_{\mathbf{K}}^{s} \varphi$ means that there is a proof of the sequent $\Gamma \Rightarrow \varphi$ where each end point (called a **leaf**) is an axiom.
- 3. Hilbert systems

A modal deduction is a finite sequence of formulas $\langle \alpha_1, \ldots, \alpha_n \rangle$ where for each $i \leq n$ either

- 1. α_i is a tautology
- 2. α_i is a substitution instance of $\Box(p \to q) \to (\Box p \to \Box q)$
- 3. α_i is of the form $\Box \alpha_j$ for some j < i
- 4. α_i follows by modus ponens from earlier formulas (i.e., there is j, k < i such that α_k is of the form $\alpha_j \rightarrow \alpha_i$).

We write $\vdash_{\mathbf{K}} \varphi$ if there is a deduction containing φ .

$\vdash_{\mathbf{K}} \Box(p \land q) \rightarrow (\Box p \land \Box q)$

$\vdash_{\mathbf{K}} \Box(p \land q) \to (\Box p \land \Box q)$

1. $p \wedge q \rightarrow p$ 2. $\Box((p \land q) \rightarrow p)$ $\Box((p \land q) \to p) \to (\Box(p \land q) \to \Box p)$ 3. 4. $\Box(p \land q) \rightarrow \Box p$ 5. $p \wedge a \rightarrow a$ $\Box((p \land q) \to q)$ 6. 7. $\Box((p \land q) \to p) \to (\Box(p \land q) \to \Box q)$ 8. $\Box(p \wedge q) \rightarrow \Box q$ $(a \rightarrow b) \rightarrow ((a \rightarrow c) \rightarrow (a \rightarrow (b \land c)))$ 9. 10. $(a \rightarrow c) \rightarrow (a \rightarrow (b \land c))$ 11. $\Box(p \wedge q) \rightarrow \Box p \wedge \Box q$

tautology Necessitation 1 Substitution instance of K MP 2.3 tautology Necessitation 5 Substitution instance of K MP 5.6 tautology $a := \Box (p \land q), b := \Box p, c := \Box q$ MP 4.9 MP 8.10

Let Γ be a set of modal formulas. A **modal deduction of** φ from Γ , denoted $\Gamma \vdash_{\mathbf{K}} \varphi$ is a finite sequence of formulas $\langle \alpha_1, \ldots, \alpha_n \rangle$ where for each $i \leq n$ either

- 1. α_i is a tautology
- 2. $\alpha_i \in \Gamma$
- 3. α_i is a substitution instance of $\Box(p \to q) \to (\Box p \to \Box q)$
- 4. α_i is of the form $\Box \alpha_j$ for some j < i and $\vdash_{\mathbf{K}} \alpha_j$
- 5. α_i follows by modus ponens from earlier formulas (i.e., there is j, k < i such that α_k is of the form $\alpha_j \to \alpha_i$).

Modal Proof Theory

- ✓ Natural deduction: $\Gamma \vdash_{\mathbf{K}}^{nd} \varphi$ means that there is a natural deduction proof where the last line is φ where φ is not in the scope of a subproof and all the assumptions in the proof are from Γ .
- ✓ Sequents: $\Gamma \vdash_{\mathbf{K}}^{s} \varphi$ means that there is a proof of the sequent $\Gamma \Rightarrow \varphi$ where each end point (called a **leaf**) is an axiom.
- ✓ Hilbert systems: $Γ ⊢_{\mathbf{K}} φ$ means that there is a modal deduction of φ from Γ.

Relationship between proof systems: For all sets of formulas Γ and formulas φ ,

 $\Gamma \vdash^{nd}_{\mathbf{K}} \varphi \text{ iff } \Gamma \vdash^{s}_{\mathbf{K}} \varphi \text{ iff } \Gamma \vdash_{\mathbf{K}} \varphi$

Relationship between proof systems: For all sets of formulas Γ and formulas $\varphi,$

$$\Gamma \vdash^{nd}_{\mathsf{K}} \varphi \text{ iff } \Gamma \vdash^{s}_{\mathsf{K}} \varphi \text{ iff } \Gamma \vdash_{\mathsf{K}} \varphi$$

How do you extend the proof system to other modal logics (e.g., KT, S4, S5)?

How do you extend the proof system to other modal logics (e.g., **KT**, **S4**, **S5**)? **Deduction Theorem**: For all Γ and formulas φ and ψ , $\Gamma \cup {\varphi} \vdash \psi$ iff $\Gamma \vdash \varphi \rightarrow \psi$.

How do you extend the proof system to other modal logics (e.g., **KT**, **S4**, **S5**)? **Deduction Theorem**: For all Γ and formulas φ and ψ , $\Gamma \cup {\varphi} \vdash \psi$ iff $\Gamma \vdash \varphi \rightarrow \psi$.

Soundness Theorem: For all Γ and formulas φ , if $\Gamma \vdash \varphi$ then $\Gamma \models \varphi$.

How do you extend the proof system to other modal logics (e.g., **KT**, **S4**, **S5**)? **Deduction Theorem**: For all Γ and formulas φ and ψ , $\Gamma \cup {\varphi} \vdash \psi$ iff $\Gamma \vdash \varphi \rightarrow \psi$.

Soundness Theorem: For all Γ and formulas φ , if $\Gamma \vdash \varphi$ then $\Gamma \models \varphi$.

Completeness Theorem: For all Γ and formulas φ , if $\Gamma \models \varphi$ then $\Gamma \vdash \varphi$. **Weak Completeness Theorem**: For all formulas φ , if $\models \varphi$ then $\vdash \varphi$.

How do you extend the proof system to other modal logics (e.g., **KT**, **S4**, **S5**)? **Deduction Theorem**: For all Γ and formulas φ and ψ , $\Gamma \cup {\varphi} \vdash \psi$ iff $\Gamma \vdash \varphi \rightarrow \psi$.

Soundness Theorem: For all Γ and formulas φ , if $\Gamma \vdash \varphi$ then $\Gamma \models \varphi$.

Completeness Theorem: For all Γ and formulas φ , if $\Gamma \models \varphi$ then $\Gamma \vdash \varphi$. **Weak Completeness Theorem**: For all formulas φ , if $\models \varphi$ then $\vdash \varphi$.

Compactness: If $\Gamma \vdash \varphi$, then there is some finite $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \vdash \varphi$

Proving Completeness

- Let K denote the minimal modal logic and ⊢ φ mean φ is derivable in K. If Γ is a set of formulas, we write Γ ⊢ φ if ⊢ (ψ₁ ∧ · · · ∧ ψ_k) → φ for some finite set ψ₁, . . . , ψ_k ∈ Γ.
- Let Γ be a set of formulas. We write $\Gamma \models \varphi$ provided for all frames \mathcal{F} for all models \mathcal{M} based on \mathcal{F} and all states w in $\mathcal{M}, \mathcal{M}, w \models \Gamma$ then $\mathcal{M}, w \models \varphi$.

Proving Completeness

- Let K denote the minimal modal logic and ⊢ φ mean φ is derivable in K. If Γ is a set of formulas, we write Γ ⊢ φ if ⊢ (ψ₁ ∧ · · · ∧ ψ_k) → φ for some finite set ψ₁, . . . , ψ_k ∈ Γ.
- Let Γ be a set of formulas. We write $\Gamma \models \varphi$ provided for all frames \mathcal{F} for all models \mathcal{M} based on \mathcal{F} and all states w in $\mathcal{M}, \mathcal{M}, w \models \Gamma$ then $\mathcal{M}, w \models \varphi$.

• A set of formulas Γ is **consistent** provided $\Gamma \not\vdash \bot$.

Proving Completeness

- Let K denote the minimal modal logic and ⊢ φ mean φ is derivable in K. If Γ is a set of formulas, we write Γ ⊢ φ if ⊢ (ψ₁ ∧ · · · ∧ ψ_k) → φ for some finite set ψ₁, . . . , ψ_k ∈ Γ.
- Let Γ be a set of formulas. We write $\Gamma \models \varphi$ provided for all frames \mathcal{F} for all models \mathcal{M} based on \mathcal{F} and all states w in $\mathcal{M}, \mathcal{M}, w \models \Gamma$ then $\mathcal{M}, w \models \varphi$.
- A set of formulas Γ is **consistent** provided $\Gamma \not\vdash \bot$.
- Strong completeness: if Γ ⊨ φ then Γ ⊢ φ and weak completeness: if ⊨ φ then ⊢ φ. Strong completeness implies weak completeness, but weak completeness does not imply strong completeness.

 Γ is a **maximally consistent set** if Γ is consistent and for each $\varphi \in \mathcal{L}$ either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$. Alternatively, Γ is consistent and every Γ' such that $\Gamma \subsetneq \Gamma'$ is inconsistent (i.e., every proper superset of Γ is inconsistent).

 Γ is a **maximally consistent set** if Γ is consistent and for each $\varphi \in \mathcal{L}$ either $\varphi \in \Gamma$ or $\neg \varphi \in \Gamma$. Alternatively, Γ is consistent and every Γ' such that $\Gamma \subsetneq \Gamma'$ is inconsistent (i.e., every proper superset of Γ is inconsistent).

Suppose that $\boldsymbol{\Gamma}$ is a maximally consistent set. Then,

1. If $\vdash \varphi$ then $\varphi \in \Gamma$ 2. If $\varphi \to \psi \in \Gamma$ and $\varphi \in \Gamma$ then $\psi \in \Gamma$ 3. $\neg \varphi \in \Gamma$ iff $\varphi \notin \Gamma$ 4. $\varphi \land \psi \in \Gamma$ iff $\varphi \in \Gamma$ and $\psi \in \Gamma$ 5. $\varphi \lor \psi \in \Gamma$ iff $\varphi \in \Gamma$ or $\psi \in \Gamma$