Modal Logic

Eric Pacuit, University of Maryland

October 16, 2023

Modal Proof Theory

- \checkmark Natural deduction: $\Gamma \vdash^{nd}_{\mathbf{K}} \varphi$ means that there is a natural deduction proof where the last line is φ where φ is not in the scope of a subproof and all the assumptions in the proof are from Γ .
- 2. Sequents
- 3. Hilbert systems

A **sequent** is two sequence of formulas separated by a double arrow \Rightarrow :

$$\varphi_1,\ldots,\varphi_n\Rightarrow\psi_1,\ldots,\psi_k$$

A sequent $\varphi_1, \ldots, \varphi_n \Rightarrow \psi_1, \ldots, \psi_k$ is **valid** when the following formula is valid (true at all states in all models):

$$(\varphi_1 \wedge \cdots \wedge \varphi_n) \to (\psi_1 \vee \cdots \vee \psi_k)$$

A **sequent** is two sequence of formulas separated by a double arrow \Rightarrow :

$$\varphi_1,\ldots,\varphi_n\Rightarrow\psi_1,\ldots,\psi_k$$

A sequent $\varphi_1, \ldots, \varphi_n \Rightarrow \psi_1, \ldots, \psi_k$ is **valid** when the following formula is valid (true at all states in all models):

$$(\varphi_1 \wedge \cdots \wedge \varphi_n) \to (\psi_1 \vee \cdots \vee \psi_k)$$

$$\frac{\mathcal{A}, \varphi \Rightarrow \mathcal{B}}{\mathcal{A} \Rightarrow \mathcal{B}, \neg \varphi} \qquad \frac{\mathcal{A} \Rightarrow \mathcal{B}, \varphi}{\mathcal{A}, \neg \varphi \Rightarrow \mathcal{B}}$$

$$\frac{\mathcal{A}, \varphi \Rightarrow \mathcal{B}}{\mathcal{A} \Rightarrow \mathcal{B}, \neg \varphi} \qquad \frac{\mathcal{A} \Rightarrow \mathcal{B}, \varphi}{\mathcal{A}, \neg \varphi \Rightarrow \mathcal{B}}$$

$$\frac{\mathcal{A}, \varphi, \psi \Rightarrow \mathcal{B}}{\mathcal{A}, \varphi \land \psi \Rightarrow \mathcal{B}} \qquad \frac{\mathcal{A} \Rightarrow \mathcal{B}, \varphi}{\mathcal{A} \Rightarrow \mathcal{B}, \varphi \land \psi}$$

$$\frac{\mathcal{A}, \varphi \Rightarrow \mathcal{B}}{\mathcal{A} \Rightarrow \mathcal{B}, \neg \varphi} \qquad \frac{\mathcal{A} \Rightarrow \mathcal{B}, \varphi}{\mathcal{A}, \neg \varphi \Rightarrow \mathcal{B}}$$

$$\frac{\mathcal{A}, \varphi, \psi \Rightarrow \mathcal{B}}{\mathcal{A}, \varphi \land \psi \Rightarrow \mathcal{B}} \qquad \frac{\mathcal{A} \Rightarrow \mathcal{B}, \varphi}{\mathcal{A} \Rightarrow \mathcal{B}, \varphi \land \psi}$$

$$\frac{\mathcal{A} \Rightarrow \mathcal{B}, \varphi, \psi}{\mathcal{A} \Rightarrow \mathcal{B}, \varphi \lor \psi} \qquad \frac{\mathcal{A}, \varphi \Rightarrow \mathcal{B} \qquad \mathcal{A}, \psi \Rightarrow \mathcal{B}}{\mathcal{A}, \varphi \lor \psi \Rightarrow \mathcal{B}}$$

$$\frac{\mathcal{A}, \varphi, \psi \Rightarrow \mathcal{B}}{\mathcal{A}, \varphi \land \psi \Rightarrow \mathcal{B}} \qquad \frac{\mathcal{A} \Rightarrow \mathcal{B}, \varphi}{\mathcal{A} \Rightarrow \mathcal{B}, \varphi \land \psi}$$

$$\begin{array}{ccc} \mathcal{A} \Rightarrow \mathcal{B}, \varphi, \psi \\ \overline{\mathcal{A} \Rightarrow \mathcal{B}, \varphi \lor \psi} \end{array} \qquad \begin{array}{ccc} \mathcal{A}, \varphi \Rightarrow \mathcal{B} & \mathcal{A}, \psi \Rightarrow \mathcal{B} \\ \overline{\mathcal{A}, \varphi \lor \psi \Rightarrow \mathcal{B}} \end{array}$$

$$\begin{array}{c} \mathcal{A},\,\varphi\Rightarrow\mathcal{B},\,\psi\\ \overline{\mathcal{A}\Rightarrow\mathcal{B},\,\varphi\rightarrow\psi} \end{array} \qquad \begin{array}{c} \mathcal{A}\Rightarrow\mathcal{B},\,\varphi\quad \mathcal{A},\,\psi\Rightarrow\mathcal{B}\\ \overline{\mathcal{A},\,\varphi\rightarrow\psi\Rightarrow\mathcal{B}} \end{array}$$

$$\begin{array}{c}
A, \varphi \Rightarrow \mathcal{B} \\
\overline{A} \Rightarrow \mathcal{B}, \neg \varphi
\end{array}
\qquad
\begin{array}{c}
A \Rightarrow \mathcal{B}, \varphi \\
\overline{A}, \neg \varphi \Rightarrow \mathcal{B}
\end{array}$$

$$\begin{array}{c}
A, \varphi, \psi \Rightarrow \mathcal{B} \\
\overline{A}, \varphi \wedge \psi \Rightarrow \mathcal{B}
\end{array}
\qquad
\begin{array}{c}
A \Rightarrow \mathcal{B}, \varphi \\
\overline{A} \Rightarrow \mathcal{B}, \varphi \wedge \psi
\end{array}$$

$$\begin{array}{c}
A \Rightarrow \mathcal{B}, \varphi \\
\overline{A} \Rightarrow \mathcal{B}, \varphi \wedge \psi
\end{array}
\qquad
\begin{array}{c}
A, \varphi \Rightarrow \mathcal{B} \\
\overline{A}, \varphi \vee \psi \Rightarrow \mathcal{B}
\end{array}$$

$$\begin{array}{c}
A, \varphi \Rightarrow \mathcal{B}, \varphi \\
\overline{A}, \varphi \vee \psi \Rightarrow \mathcal{B}
\end{array}$$

$$\begin{array}{c}
A, \varphi \Rightarrow \mathcal{B}, \psi \\
\overline{A} \Rightarrow \mathcal{B}, \varphi \wedge \psi
\end{array}
\qquad
\begin{array}{c}
A \Rightarrow \mathcal{B}, \varphi \\
\overline{A}, \varphi \vee \psi \Rightarrow \mathcal{B}
\end{array}$$

$$\begin{array}{c}
A \Rightarrow \mathcal{B}, \varphi \\
\overline{A}, \varphi \vee \psi \Rightarrow \mathcal{B}
\end{array}$$

$$\begin{array}{c}
A \Rightarrow \mathcal{B}, \varphi \\
\overline{A}, \varphi \rightarrow \psi \Rightarrow \mathcal{B}
\end{array}$$

There are also *structural rules* that allow us to think of the sequences to the left and right of the \Rightarrow as *sets* of formulas.

$$\frac{\mathcal{A}, \psi, \varphi, \mathcal{C} \Rightarrow \mathcal{B}}{\mathcal{A}, \varphi, \psi, \mathcal{C} \Rightarrow \mathcal{B}} \qquad \frac{\mathcal{A} \Rightarrow \mathcal{B}, \psi, \varphi, \mathcal{C}}{\mathcal{A} \Rightarrow \mathcal{B}, \varphi, \psi, \mathcal{C}}$$

$$\begin{array}{c}
\mathcal{A}, \psi, \varphi, \mathcal{C} \Rightarrow \mathcal{B} \\
\overline{\mathcal{A}, \varphi, \psi, \mathcal{C} \Rightarrow \mathcal{B}}
\end{array}
\qquad
\begin{array}{c}
\mathcal{A} \Rightarrow \mathcal{B}, \psi, \varphi, \mathcal{C} \\
\overline{\mathcal{A} \Rightarrow \mathcal{B}, \varphi, \psi, \mathcal{C}}
\end{array}$$

$$\frac{\mathcal{A}, \mathcal{C} \Rightarrow \mathcal{B}}{\mathcal{A}, \varphi, \mathcal{C} \Rightarrow \mathcal{B}} \qquad \frac{\mathcal{A} \Rightarrow \mathcal{B}, \mathcal{C}}{\mathcal{A} \Rightarrow \mathcal{B}, \varphi, \mathcal{C}}$$

$$\begin{array}{c} \mathcal{A}, \psi, \varphi, \mathcal{C} \Rightarrow \mathcal{B} \\ \hline \mathcal{A}, \varphi, \psi, \mathcal{C} \Rightarrow \mathcal{B} \end{array} \qquad \begin{array}{c} \mathcal{A} \Rightarrow \mathcal{B}, \psi, \varphi, \mathcal{C} \\ \hline \mathcal{A} \Rightarrow \mathcal{B}, \varphi, \psi, \mathcal{C} \end{array}$$

$$\frac{\mathcal{A}, \mathcal{C} \Rightarrow \mathcal{B}}{\mathcal{A}, \varphi, \mathcal{C} \Rightarrow \mathcal{B}} \qquad \frac{\mathcal{A} \Rightarrow \mathcal{B}, \mathcal{C}}{\mathcal{A} \Rightarrow \mathcal{B}, \varphi, \mathcal{C}}$$

$$\begin{array}{ccc} \mathcal{A}, \varphi, \varphi, \mathcal{C} \Rightarrow \mathcal{B} \\ \hline \mathcal{A}, \varphi, \mathcal{C} \Rightarrow \mathcal{B} \end{array} \qquad \begin{array}{cccc} \mathcal{A} \Rightarrow \mathcal{B}, \varphi, \varphi, \mathcal{C} \\ \hline \mathcal{A} \Rightarrow \mathcal{B}, \varphi, \mathcal{C} \end{array}$$

Key Observation: If a sequent $\mathcal{A} \Rightarrow \mathcal{B}$ consists of propositional formulas, then the previous rules will reduce $\mathcal{A} \Rightarrow \mathcal{B}$ to:

$$p_1,\ldots,p_n\Rightarrow q_1,\ldots,q_k$$

Where each $p_1, \ldots, p_n, q_1, \ldots, q_k$ are all atomic propositions.

Key Observation: If a sequent $\mathcal{A}\Rightarrow\mathcal{B}$ consists of propositional formulas, then the previous rules will reduce $\mathcal{A}\Rightarrow\mathcal{B}$ to:

$$p_1,\ldots,p_n\Rightarrow q_1,\ldots,q_k$$

Where each $p_1, \ldots, p_n, q_1, \ldots, q_k$ are all atomic propositions.

This gives an algorithm to determine whether φ is a tautology.

1. Consider the sequent $\Rightarrow \varphi$.

Key Observation: If a sequent $\mathcal{A}\Rightarrow\mathcal{B}$ consists of propositional formulas, then the previous rules will reduce $\mathcal{A}\Rightarrow\mathcal{B}$ to:

$$p_1,\ldots,p_n\Rightarrow q_1,\ldots,q_k$$

Where each $p_1, \ldots, p_n, q_1, \ldots, q_k$ are all atomic propositions.

This gives an algorithm to determine whether φ is a tautology.

- 1. Consider the sequent $\Rightarrow \varphi$.
- 2. Use the previous rules to reduce the sequent to something of the form $\vec{p} \Rightarrow \vec{q}$, where \vec{p} and \vec{q} are both sequences of atomic propositions.

Key Observation: If a sequent $\mathcal{A}\Rightarrow\mathcal{B}$ consists of propositional formulas, then the previous rules will reduce $\mathcal{A}\Rightarrow\mathcal{B}$ to:

$$p_1,\ldots,p_n\Rightarrow q_1,\ldots,q_k$$

Where each $p_1, \ldots, p_n, q_1, \ldots, q_k$ are all atomic propositions.

This gives an algorithm to determine whether φ is a tautology.

- 1. Consider the sequent $\Rightarrow \varphi$.
- 2. Use the previous rules to reduce the sequent to something of the form $\vec{p} \Rightarrow \vec{q}$, where \vec{p} and \vec{q} are both sequences of atomic propositions.
- 3. If there is an atomic proposition that occurs in \vec{p} and \vec{q} then the formula is a tautology. If there is no atomic proposition that occurs in both \vec{p} and \vec{q} , then the valuation that makes each atomic proposition in \vec{p} true and each atomic proposition in \vec{q} false is a counterexample.

Modal Sequents

Use the previous rules and the definition of \Box and $\neg \diamondsuit \neg$ to reduce a sequent to something of the form:

$$\vec{p}$$
, $\diamond \varphi_1, \ldots, \diamond \varphi_n \Rightarrow \diamond \psi_1, \ldots, \diamond \psi_k, \vec{q}$

Modal Sequents

Use the previous rules and the definition of \Box and $\neg \diamondsuit \neg$ to reduce a sequent to something of the form:

$$\vec{p}$$
, $\diamond \varphi_1, \ldots, \diamond \varphi_n \Rightarrow \diamond \psi_1, \ldots, \diamond \psi_k, \vec{q}$

Modal Decomposition Fact. Any sequence of the form

$$\vec{p}, \Diamond \varphi_1, \ldots, \Diamond \varphi_n \Rightarrow \Diamond \psi_1, \ldots, \Diamond \psi_k, \vec{q}$$

is valid if, and only if, either

- 1. there is an atomic proposition that occurs in both \vec{p} and \vec{q} , or
- 2. for some $1 \le i \le n$, $\varphi_i \Rightarrow \psi_1, \ldots, \psi_k$ is valid

Sequent Rule for □

$$\frac{\mathcal{A} \Rightarrow \varphi}{\Box \mathcal{A} \Rightarrow \Box \varphi}$$

where
$$\Box \mathcal{A} = \{ \Box \psi \mid \psi \in \mathcal{A} \}$$

A **proof of the sequent** $\mathcal{A}\Rightarrow\mathcal{B}$ is a tree of sequents where the root is $\mathcal{A}\Rightarrow\mathcal{B}$ and for each sequent in the tree, the children of the sequent are an application of one of the rules.

We call the sequent $A \Rightarrow B$ an **axiom** when there is some atomic proposition p that is contained in both A and B.

Modal Proof Theory

- ✓ Natural deduction: $\Gamma \vdash_{\mathbf{K}}^{nd} \varphi$ means that there is a natural deduction proof where the last line is φ where φ is not in the scope of a subproof and all the assumptions in the proof are from Γ.
- ✓ Sequents: $\Gamma \vdash_{\mathbf{K}}^{s} \varphi$ means that there is a proof of the sequent $\Gamma \Rightarrow \varphi$ where each end point (called a **leaf**) is an axiom.
- 3. Hilbert systems