Modal Logic

Eric Pacuit, University of Maryland

September 27, 2023

1

Logics: Soundness and Completeness

A **logic** is a set of formulas **L** satisfying certain closure conditions. We write $\vdash_{\mathbf{L}} \varphi$ iff $\varphi \in \mathbf{L}$.

Rule of inference: "From $\varphi_1, \ldots, \varphi_n$ infer φ ", denoted $\frac{\varphi_1 \ \varphi_2 \ \cdots \ \varphi_n}{\varphi}$, where $n \ge 0$. A logic is closed under a rule of inference means that if $\{\varphi_1, \varphi_2, \ldots, \varphi_n\} \subseteq \mathbf{L}$, then $\varphi \in \mathbf{L}$

Uniform Substitution (US)

$\frac{\varphi}{\psi}$

where ψ is obtained from φ by uniformly replacing propositional atoms in φ by arbitrary formulas (i.e., $\psi = \varphi^{\sigma}$, where σ is a substitution).

Uniform Substitution (US)

 $\frac{\varphi}{\psi}$

where ψ is obtained from φ by uniformly replacing propositional atoms in φ by arbitrary formulas (i.e., $\psi = \varphi^{\sigma}$, where σ is a substitution).

Axiom Schemes vs. Axioms:

- ▶ The logic contains all instances of $\alpha \to (\beta \to \alpha)$
- \blacktriangleright The logic contains the axiom $p \to (q \to p)$ and is closed under uniform substitution

Propositional Calculus (PC)

A modal formula φ is called a **(propositional) tautology** if $\varphi = (\alpha)^{\sigma}$ where σ is a substitution, α is a formula of propositional logic and α is a tautology.

For example, $\Box p \rightarrow (\Diamond (p \land q) \rightarrow \Box p)$ is a tautology because $a \rightarrow (b \rightarrow a)$ is a tautology in the language of propositional logic and

$$(a
ightarrow (b
ightarrow a))^{\sigma} = \Box p
ightarrow (\diamondsuit (p \land q)
ightarrow \Box p)$$

where $\sigma(a) = \Box p$ and $\sigma(b) = \Diamond (p \land q)$.

Propositional Calculus (PC)

RPL
$$\begin{array}{ccc} \varphi_1 & \varphi_2 & \cdots & \varphi_n \\ \varphi & & \varphi \end{array}$$
, where φ is a tautological consequence of $\varphi_1, \ldots, \varphi_n$ (i.e., $(\varphi_1 \wedge \cdots \wedge \varphi_n) \rightarrow \varphi$ is a propositional tautology).

Propositional Calculus (PC)

Normal Modal Logic

A normal modal logic is a logic that:

- contains all instances of propositional tautologies
- ▶ is closed under modus ponens: $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$

Normal Modal Logic

A normal modal logic is a logic that:

- contains all instances of propositional tautologies
- ▶ is closed under modus ponens: $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$
- contains all instances of
 - $\blacktriangleright \ \mathit{K}: \ \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$
 - $\blacktriangleright Dual: \diamond \varphi \leftrightarrow \neg \Box \neg \varphi$
- ▶ is closed under necessitation (N): $\frac{\varphi}{\Box \varphi}$

Normal Modal Logic

A normal modal logic is a logic that:

- contains all instances of propositional tautologies
- ▶ is closed under modus ponens: $\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$
- contains all instances of
 - $\blacktriangleright \ \mathit{K}: \ \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$
 - $\blacktriangleright Dual: \diamond \varphi \leftrightarrow \neg \Box \neg \varphi$
- ▶ is closed under necessitation (N): $\frac{\varphi}{\Box \varphi}$

▶ is closed under uniform substitution: $\frac{\varphi}{\psi}$, where ψ is obtained from φ by uniformly replacing propositional atoms in φ by arbitrary formulas

An equivalent definition of a normal modal logic: A **normal modal logic** is a logic that:

contains all instances of propositional tautologies

• is closed under modus ponens:
$$\frac{\varphi \quad \varphi
ightarrow \psi}{\psi}$$

contains all instances of

$$\blacktriangleright Dual: \Diamond \varphi \leftrightarrow \neg \Box \neg \varphi$$

► is closed under
$$RK$$
: $\frac{(\varphi_1 \land \cdots \land \varphi_n) \to \varphi}{(\Box \varphi_1 \land \cdots \land \Box \varphi_n) \to \Box \varphi}$ $(n \ge 0)$

An equivalent definition of a normal modal logic: A **normal modal logic** is a logic that

contains all instances of propositional tautologies

▶ is closed under modus ponens:
$$\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$$

contains all instances of

Dual:
$$\Diamond \varphi \leftrightarrow \neg \Box \neg \varphi$$
,
M: $\Box (\varphi \land \psi) \rightarrow (\Box \varphi \land \Box \psi)$
C: $(\Box \varphi \land \Box \psi) \rightarrow \Box (\varphi \land \psi)$
N: $\Box \top$

$$\blacktriangleright \text{ is closed under } RE: \quad \frac{\varphi \leftrightarrow \psi}{\Box \varphi \leftrightarrow \Box \psi}$$

1. The set of all formulas is a normal modal logic (the *inconsistent* logic).

1. The set of all formulas is a normal modal logic (the *inconsistent* logic).

2. Let \mathcal{F} be a frame. The set $Log(\mathcal{F}) = \{ \varphi \mid \mathcal{F} \models \varphi \}$ is a normal modal logic.

1. The set of all formulas is a normal modal logic (the *inconsistent* logic).

- 2. Let \mathcal{F} be a frame. The set $Log(\mathcal{F}) = \{ \varphi \mid \mathcal{F} \models \varphi \}$ is a normal modal logic.
- 3. Let F be a set of frames. The set $Log(F) = \{ \varphi \mid \mathcal{F} \models \varphi \text{ for all } \mathcal{F} \in F \}$ is a normal logic.

1. The set of all formulas is a normal modal logic (the *inconsistent* logic).

- 2. Let \mathcal{F} be a frame. The set $Log(\mathcal{F}) = \{ \varphi \mid \mathcal{F} \models \varphi \}$ is a normal modal logic.
- 3. Let F be a set of frames. The set $Log(F) = \{ \varphi \mid \mathcal{F} \models \varphi \text{ for all } \mathcal{F} \in F \}$ is a normal logic.
- 4. Let **K** be the smallest normal modal logic: The smallest set of formulas containing all propositional tautologies, all instances of *K*, all instances of *Dual*, closed under Modus Ponens, and closed under Necessitation.

Modal Logics

PC: All propositional tautologies N: The rule of necessitation: $\frac{\varphi}{\Box \varphi}$

Some Axioms

$$\begin{array}{lll} \mathcal{K} & & \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi) \\ \mathcal{D} & & \Box \varphi \to \Diamond \varphi \\ \mathcal{T} & & \Box \varphi \to \varphi \\ \mathcal{4} & & \Box \varphi \to \Box \Box \varphi \\ \mathcal{5} & & \neg \Box \varphi \to \Box \neg \Box \varphi \\ \mathcal{L} & & \Box(\Box \varphi \to \varphi) \to \Box \varphi \end{array}$$

Modal Logics

PC: All propositional tautologies N: The rule of necessitation: $\frac{\varphi}{\Box \varphi}$

Some Axioms

$$\begin{array}{lll}
\mathsf{K} & \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi) \\
\mathsf{D} & \Box \varphi \to \Diamond \varphi \\
\mathsf{T} & \Box \varphi \to \varphi \\
\mathsf{4} & \Box \varphi \to \Box \Box \varphi \\
\mathsf{5} & \neg \Box \varphi \to \Box \neg \Box \varphi \\
\mathsf{L} & \Box(\Box \varphi \to \varphi) \to \Box \varphi
\end{array}$$

Some Normal Modal Logics

$$K K + PC + N$$

$$\mathbf{T} \qquad K + T + PC + N$$

K4
$$K + 4 + PC + N$$

S4 $K + T + 4 + PC + N$

$$K + T + 4 + PC + N$$

S5
$$K + T + 4 + 5 + PC + N$$

 $$K + D + 4 + 5 + PC + N$$

$$\mathbf{GL} \qquad K + L + PC + N$$

Suppose that L and L' are two modal logics. We say that L' extends L when $L\subseteq L'.$ For example,

Suppose that L and L' are two modal logics. We say that L' extends L when $L\subseteq L'.$ For example,

Examples:

 $\mathbb{F}\subseteq \mathbb{F}'.$ Then, $\mathsf{Log}(\mathbb{F}')\subseteq \mathsf{Log}(\mathbb{F})$

 $\mathbb{F} \subseteq \mathbb{F}'$. Then, $\mathsf{Log}(\mathbb{F}') \subseteq \mathsf{Log}(\mathbb{F})$

$$\begin{split} & \textbf{GL} \subseteq \text{Log}(\{\mathcal{F} \mid \mathcal{F} \text{ is trans. and converse well-founded}\}) \\ & \textbf{K4} \subseteq \text{Log}(\{\mathcal{F} \mid \mathcal{F} \text{ is trans.}\}) \\ & \text{Log}(\{\mathcal{F} \mid \mathcal{F} \text{ is trans.}\}) \subseteq \text{Log}(\{\mathcal{F} \mid \mathcal{F} \text{ is trans. and converse well-founded}\}) \end{split}$$

 $\mathbb{F} \subseteq \mathbb{F}'$. Then, $\mathsf{Log}(\mathbb{F}') \subseteq \mathsf{Log}(\mathbb{F})$

$$\begin{split} & \textbf{GL} \subseteq \text{Log}(\{\mathcal{F} \mid \mathcal{F} \text{ is trans. and converse well-founded}\}) \\ & \textbf{K4} \subseteq \text{Log}(\{\mathcal{F} \mid \mathcal{F} \text{ is trans.}\}) \\ & \text{Log}(\{\mathcal{F} \mid \mathcal{F} \text{ is trans.}\}) \subseteq \text{Log}(\{\mathcal{F} \mid \mathcal{F} \text{ is trans. and converse well-founded}\}) \end{split}$$

What is the relationship between **GL** and **K4**?

 $\mathbb{F} \subseteq \mathbb{F}'$. Then, $\mathsf{Log}(\mathbb{F}') \subseteq \mathsf{Log}(\mathbb{F})$

$$\begin{split} & \textbf{GL} \subseteq \text{Log}(\{\mathcal{F} \mid \mathcal{F} \text{ is trans. and converse well-founded}\}) \\ & \textbf{K4} \subseteq \text{Log}(\{\mathcal{F} \mid \mathcal{F} \text{ is trans.}\}) \\ & \text{Log}(\{\mathcal{F} \mid \mathcal{F} \text{ is trans.}\}) \subseteq \text{Log}(\{\mathcal{F} \mid \mathcal{F} \text{ is trans. and converse well-founded}\}) \end{split}$$

What is the relationship between **GL** and **K4**? **K4** \subseteq **GL** $\Box \varphi \rightarrow \Box \Box \varphi$ is a *consequence* of $\Box (\Box \varphi \rightarrow \varphi) \rightarrow \Box \varphi$

Logical consequence

Suppose that Γ is a set of formulas and \mathbb{F} is a set of frames. We write $\mathcal{M}, w \models \Gamma$ iff $\mathcal{M}, w \models \alpha$ for all $\alpha \in \Gamma$.

Logical consequence

Suppose that Γ is a set of formulas and \mathbb{F} is a set of frames. We write $\mathcal{M}, w \models \Gamma$ iff $\mathcal{M}, w \models \alpha$ for all $\alpha \in \Gamma$.

Local: $\Gamma \models_{\mathbb{F}} \varphi$ iff for all frames $\mathcal{F} \in \mathbb{F}$, for all models \mathcal{M} based on \mathcal{F} and all states w in \mathcal{M} ,

 \mathcal{M} , $w \models \Gamma$ implies \mathcal{M} , $w \models \varphi$

Logical consequence

Suppose that Γ is a set of formulas and \mathbb{F} is a set of frames. We write $\mathcal{M}, w \models \Gamma$ iff $\mathcal{M}, w \models \alpha$ for all $\alpha \in \Gamma$.

Local: $\Gamma \models_{\mathbb{F}} \varphi$ iff for all frames $\mathcal{F} \in \mathbb{F}$, for all models \mathcal{M} based on \mathcal{F} and all states w in \mathcal{M} ,

 \mathcal{M} , $w \models \Gamma$ implies \mathcal{M} , $w \models arphi$

Global: $\Gamma \models_{\mathbb{F}}^{g} \varphi$ iff for all frames $\mathcal{F} \in \mathbb{F}$, for all models \mathcal{M} based on \mathcal{F} , $\mathcal{M} \models \Gamma$ implies $\mathcal{M} \models \varphi$

$\{p\} \not\models \Box p \qquad \qquad \{p\} \models^g \Box p$

$$\{p\} \not\models \Box p \qquad \qquad \{p\} \models^{g} \Box p$$

 $\models (\Box p \land \Diamond q) \to \Diamond (p \land q)$ $\models (\Box p \to \Diamond p) \models \Diamond \top$ $\{\Box p \to p\} \models \Box p \to \Diamond p$

$$\{p\} \not\models \Box p \qquad \qquad \{p\} \models^g \Box p$$

$$\blacktriangleright \models (\Box p \land \Diamond q) \rightarrow \Diamond (p \land q)$$

$$\blacktriangleright \ \{\Box p \to \Diamond p\} \models \Diamond \top$$

$$\blacktriangleright \ \{\Box p \to p\} \models \Box p \to \Diamond p$$

$$\blacktriangleright \ \{\Box p \to p, \Box p \to \Box \Box p, p \to \Box \Diamond p\} \models \Diamond p \to \Box \Diamond p$$

$$\{p\} \not\models \Box p \qquad \qquad \{p\} \models^g \Box p$$

$$\models (\Box p \land \Diamond q) \rightarrow \Diamond (p \land q)$$

$$\{\Box p \rightarrow \Diamond p\} \models \Diamond \top$$

$$\{\Box p \rightarrow p\} \models \Box p \rightarrow \Diamond p$$

$$\{\Box p \rightarrow p, \Box p \rightarrow \Box \Box p, p \rightarrow \Box \Diamond p\} \models \Diamond p \rightarrow \Box \Diamond p$$

$$\{\Box p \rightarrow \Diamond p, \Diamond p \rightarrow \Box \Diamond p\} \models \Box (\Box p \rightarrow p)$$

$$\{p\} \not\models \Box p \qquad \qquad \{p\} \models^{g} \Box p$$

$$\models (\Box p \land \Diamond q) \rightarrow \Diamond (p \land q)$$

$$\{\Box p \rightarrow \Diamond p\} \models \Diamond \top$$

$$\{\Box p \rightarrow p\} \models \Box p \rightarrow \Diamond p$$

$$\{\Box p \rightarrow p, \Box p \rightarrow \Box \Box p, p \rightarrow \Box \Diamond p\} \models \Diamond p \rightarrow \Box \Diamond p$$

$$\{\Box p \rightarrow \Diamond p, \Diamond p \rightarrow \Box \Diamond p\} \models \Box (\Box p \rightarrow p)$$

$$\{\Box (\Box p \rightarrow p) \rightarrow \Box p\} \models \Box p \rightarrow \Box \Box p$$