Introduction to Modal Logic

Eric Pacuit, University of Maryland

September 27, 2023

1

Valid on a model
$$\mathcal{M} = \langle W, V, R \rangle$$

 $\mathcal{M} \models \varphi$: for all $w \in W$, $\mathcal{M}, w \models \varphi$

Valid on a model $\mathcal{M} = \langle W, V, R \rangle$ $\mathcal{M} \models \varphi$: for all $w \in W$, $\mathcal{M}, w \models \varphi$ Valid on a frame $\mathcal{F} = \langle W, R \rangle$ $\mathcal{F} \models \varphi$: for all \mathcal{M} based on \mathcal{F} , for all $w \in W$, $\mathcal{M}, w \models \varphi$

Valid on a model $\mathcal{M} = \langle W, V, R \rangle$ $\mathcal{M} \models \varphi$: for all $w \in W, \mathcal{M}, w \models \varphi$ Valid on a frame $\mathcal{F} = \langle W, R \rangle$ $\mathcal{F} \models \varphi$: for all \mathcal{M} based on \mathcal{F} , for all $w \in W, \mathcal{M}, w \models \varphi$ for all valuation functions V, for all $w \in W, \langle W, R, V \rangle, w \models \varphi$

Valid on a model $\mathcal{M} = \langle W, V, R \rangle$ $\mathcal{M} \models \varphi$: for all $w \in W, \mathcal{M}, w \models \varphi$ Valid on a frame $\mathcal{F} = \langle W, R \rangle$ $\mathcal{F} \models \varphi$: for all \mathcal{M} based on \mathcal{F} , for all $w \in W, \mathcal{M}, w \models \varphi$ for all valuation functions V, for all $w \in W, \langle W, R, V \rangle, w \models \varphi$ Valid at a state on a frame $\mathcal{F} = \langle W, R \rangle$ with $w \in W$

 \mathcal{F} , $w \models arphi$: for all \mathcal{M} based on \mathcal{F} , \mathcal{M} , $w \models arphi$

Valid on a model $\mathcal{M} = \langle W, V, R \rangle$ $\mathcal{M} \models \varphi$: for all $w \in W, \mathcal{M}, w \models \varphi$ Valid on a frame $\mathcal{F} = \langle W, R \rangle$ $\mathcal{F} \models \varphi$: for all \mathcal{M} based on \mathcal{F} , for all $w \in W, \mathcal{M}, w \models \varphi$ for all valuation functions V, for all $w \in W, \langle W, R, V \rangle, w \models \varphi$

Valid at a state on a frame $\mathcal{F} = \langle W, R
angle$ with $w \in W$

$$\mathcal{F}$$
, $w\models arphi$: for all \mathcal{M} based on \mathcal{F} , \mathcal{M} , $w\models arphi$

Valid in a class F of frames:

$$\models_{\mathsf{F}} \varphi : \text{ for all } \mathcal{F} \in \mathsf{F}, \ \mathcal{F} \models \varphi$$

Note that if $\mathcal{F} \models \varphi$ where φ is some modal formula, then $\mathcal{F} \models \varphi^*$ where φ^* is any **substitution instance** of φ . That is, φ^* is obtained by replacing sentence letters in φ with modal formulas.

A substitution is a function from sentence letters to well formed modal formulas (i.e., $\sigma : At \to \mathcal{L}$). We extend a substitution σ to all formulas φ by recursion as follows (we write φ^{σ} for $\sigma(\varphi)$):

1.
$$\sigma(\perp) = \perp$$

2. $\sigma(\neg \varphi) = \neg \sigma(\varphi)$
3. $\sigma(\varphi \land \psi) = \sigma(\varphi) \land \sigma(\psi)$
4. $\sigma(\Box \varphi) = \Box \sigma(\varphi)$
5. $\sigma(\diamond \varphi) = \diamond \sigma(\varphi)$

 \triangleleft

A substitution is a function from sentence letters to well formed modal formulas (i.e., $\sigma : At \to \mathcal{L}$). We extend a substitution σ to all formulas φ by recursion as follows (we write φ^{σ} for $\sigma(\varphi)$):

1.
$$\sigma(\perp) = \perp$$

2. $\sigma(\neg \varphi) = \neg \sigma(\varphi)$
3. $\sigma(\varphi \land \psi) = \sigma(\varphi) \land \sigma(\psi)$
4. $\sigma(\Box \varphi) = \Box \sigma(\varphi)$
5. $\sigma(\diamond \varphi) = \diamond \sigma(\varphi)$

For example, if $\sigma(p) = \Box \diamondsuit (p \land q)$ and $\sigma(q) = p \land \Box q$ then

$$(\Box(p \land q) \to \Box p)^{\sigma} = \Box((\Box \diamondsuit (p \land q)) \land (p \land \Box q)) \to \Box(\Box \diamondsuit (p \land q))$$

 \triangleleft

Fact. For any frame \mathcal{F} and modal formula φ , if $\mathcal{F} \models \varphi$, then for any substitution $\sigma : At \to \mathcal{L}$, we have that $\mathcal{F} \models \varphi^{\sigma}$.

Fact. For any frame \mathcal{F} and modal formula φ , if $\mathcal{F} \models \varphi$, then for any substitution $\sigma : At \rightarrow \mathcal{L}$, we have that $\mathcal{F} \models \varphi^{\sigma}$.

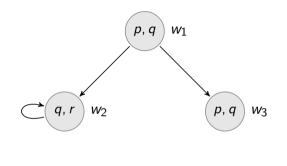
The above fact is *not* true for model validity.

Fact. For any frame \mathcal{F} and modal formula φ , if $\mathcal{F} \models \varphi$, then for any substitution $\sigma : At \rightarrow \mathcal{L}$, we have that $\mathcal{F} \models \varphi^{\sigma}$.

The above fact is *not* true for model validity.

This means, for instance, that in order to show that $\mathcal{F} \not\models \Box \varphi \rightarrow \varphi$ it is enough to show that $\mathcal{F} \not\models \Box p \rightarrow p$ where p is a sentence letter.

Model validity



 $\mathcal{M}\models \Box q$

validity on a model is *not* closed under substitution $(\mathcal{M} \not\models \Box p)$

Frame validity

Some frame validities:

 $\square p \leftrightarrow \neg \Diamond \neg p$ $(\square p \land \square q) \leftrightarrow \square (p \land q)$ $\square (p \rightarrow q) \rightarrow (\square p \rightarrow \square q)$

Frame validity

Some frame validities:

$$\square p \leftrightarrow \neg \Diamond \neg p (\square p \land \square q) \leftrightarrow \square (p \land q) \square (p \rightarrow q) \rightarrow (\square p \rightarrow \square q)$$

Some frame non-validities:

▶ $\Box p \lor \Box \neg p$ (compare with the validity $\Box p \lor \neg \Box p$)

$$\blacktriangleright \ (\Diamond p \land \Diamond q) \to \Diamond (p \land q)$$

 $\blacktriangleright \Box (p \lor q) \to (\Box p \lor \Box q)$

$$\blacktriangleright \Box p \rightarrow p$$

then is valid

Reflexive: for all w, w R w

 $\Box \phi
ightarrow \phi$

Serial: for all w, there is v such that w R v

$$\Box \phi
ightarrow \phi$$

Serial: for all w, there is v such that w R v

$$\Box \phi \to \Diamond \phi$$

Serial: for all w, there is v such that w R v

 $\Box \varphi \to \varphi$

 $\Box \varphi
ightarrow \Diamond \varphi$

Transitive: for all w, v, x, if w R v and v R x, then w R x

Reflexive: for all w , $w R w$	$\Box \phi ightarrow \phi$
Serial: for all w , there is v such that $w R v$	$\Box \phi ightarrow \Diamond \phi$
Transitive: for all w, v, x , if $w R v$ and $v R x$, then $w R x$	$\Box \varphi \to \Box \Box \varphi$

Reflexive: for all w, w R w $\Box \varphi \rightarrow \varphi$ Serial: for all w, there is v such that w R v $\Box \varphi \rightarrow \Diamond \varphi$ Transitive: for all w, v, x, if w R v and v R x, then w R x $\Box \varphi \rightarrow \Box \varphi$ Euclidean: for all w, v, x, if w R v and w R x, then v R x

Reflexive: for all w, w R w $\Box \varphi \rightarrow \varphi$ Serial: for all w, there is v such that w R v $\Box \varphi \rightarrow \Diamond \varphi$ Transitive: for all w, v, x, if w R v and v R x, then w R x $\Box \varphi \rightarrow \Box \Box \varphi$ Euclidean: for all w, v, x, if w R v and w R x, then v R x $\neg \Box \varphi \rightarrow \Box \neg \Box \varphi$

Reflexive: for all w, w R w $\Box \varphi \rightarrow \varphi$ Serial: for all w, there is v such that w R v $\Box \varphi \rightarrow \Diamond \varphi$ Transitive: for all w, v, x, if w R v and v R x, then w R x $\Box \varphi \rightarrow \Box \Box \varphi$ Euclidean: for all w, v, x, if w R v and w R x, then v R x $\neg \Box \varphi \rightarrow \Box \neg \Box \varphi$ Symmetric: for all w, v, if w R v, then v R w $\neg \Box \varphi \rightarrow \Box \neg \Box \varphi$

Reflexive: for all w, w R w $\Box \varphi \rightarrow \varphi$ Serial: for all w, there is v such that w R v $\Box \varphi \rightarrow \Diamond \varphi$ Transitive: for all w, v, x, if w R v and v R x, then w R x $\Box \varphi \rightarrow \Box \Box \varphi$ Euclidean: for all w, v, x, if w R v and w R x, then v R x $\neg \Box \varphi \rightarrow \Box \neg \Box \varphi$ Symmetric: for all w, v, if w R v, then v R w $\varphi \rightarrow \Box \Diamond \varphi$

Reflexive: for all w. w R w $\Box \phi \rightarrow \phi$ Serial: for all w, there is v such that w R v $\Box \phi \rightarrow \Diamond \phi$ Transitive: for all w, v, x, if w R v and v R x, then w R x $\Box \phi \to \Box \Box \phi$ Euclidean: for all w, v, x, if w R v and w R x, then v R x $\neg \Box \phi \rightarrow \Box \neg \Box \phi$ Symmetric: for all w, v, if w R v, then v R w $\phi \to \Box \Diamond \phi$ Confluence: for all x, y, z if xRy and xRz then there is an s such that yRs and zRs

Reflexive: for all w , $w R w$	$\Box \phi \to \phi$
Serial: for all w , there is v such that $w R v$	$\Box \phi ightarrow \Diamond \phi$
Transitive: for all w, v, x , if $w R v$ and $v R x$, then $w R x$	$\Box \varphi \to \Box \Box \varphi$
Euclidean: for all w, v, x , if $w R v$ and $w R x$, then $v R x$	$\neg \Box \varphi \rightarrow \Box \neg \Box \varphi$
Symmetric: for all w , v , if $w R v$, then $v R w$	$arphi ightarrow \Box \diamondsuit arphi$
Confluence: for all <i>x</i> , <i>y</i> , <i>z</i> if <i>xRy</i> and <i>xRz</i> then there is an <i>s</i> such that <i>yRs</i> and <i>zRs</i>	$\Diamond \Box \varphi \to \Box \Diamond \varphi$

Correspondence

Fact. For any frame $\mathcal{F} = \langle W, R \rangle$,

if \mathcal{F} is reflexive (for all $w \in W$, w R w), then $\mathcal{F} \models \Box \varphi \rightarrow \varphi$.

Correspondence

Fact. For any frame $\mathcal{F} = \langle W, R \rangle$,

 \mathcal{F} is reflexive (for all $w \in W$, w R w) if, and only if, $\mathcal{F} \models \Box \varphi \rightarrow \varphi$.

Modal Formula	Corresponding Property
$\Box arphi ightarrow arphi$	Reflexive: for all w, w R w
$\Box \phi ightarrow \Diamond \phi$	Serial: for all w , there is v such that $w R v$
$\Box \varphi \to \Box \Box \varphi$	Transitive: for all w, v, x, if w R v and v R x, then w R x
$ eg \Box \varphi ightarrow \Box \neg \Box \varphi$	Euclidean: for all w, v, x , if $w R v$ and $w R x$, then $v R x$
$arphi ightarrow \Box \diamondsuit arphi$	Symmetric: for all w, v , if $w R v$, then $v R w$
$\Diamond \Box \varphi \to \Box \Diamond \varphi$	Confluence: for all <i>x</i> , <i>y</i> , <i>z</i> if <i>xRy</i> and <i>xRz</i> then there is an <i>s</i> such that <i>yRs</i> and <i>zRs</i>

Does every first-order property of a frame correspond to a modal formula?

Does every first-order property of a frame correspond to a modal formula? No: There is no modal formula φ such that F ⊨ φ iff F is *irreflexive* (for all w, not-w R w). Does every first-order property of a frame correspond to a modal formula? No: There is no modal formula φ such that F ⊨ φ iff F is *irreflexive* (for all w, not-w R w).

Does every modal formula correspond to a first-order property of a frame?

- Does every first-order property of a frame correspond to a modal formula? No: There is no modal formula φ such that F ⊨ φ iff F is *irreflexive* (for all w, not-w R w).
- ▶ Does every modal formula correspond to a first-order property of a frame? No: neither $\Box \Diamond \varphi \rightarrow \Diamond \Box \varphi$ nor $\Box (\Box \varphi \rightarrow \varphi) \rightarrow \Box \varphi$ corresponds to a first-order property.

- Does every first-order property of a frame correspond to a modal formula? No: There is no modal formula φ such that F ⊨ φ iff F is *irreflexive* (for all w, not-w R w).
- Does every modal formula correspond to a first-order property of a frame? No: neither □◊φ → ◊□φ nor □(□φ → φ) → □φ corresponds to a first-order property.
- Is there an algorithm that finds first-order correspondents to modal formulas?

- Does every first-order property of a frame correspond to a modal formula? No: There is no modal formula φ such that F ⊨ φ iff F is *irreflexive* (for all w, not-w R w).
- Does every modal formula correspond to a first-order property of a frame? No: neither □◊φ → ◊□φ nor □(□φ → φ) → □φ corresponds to a first-order property.
- Is there an algorithm that finds first-order correspondents to modal formulas?

Yes, but it only works for certain formulas (The Sahlqvist Theorem) SQEMA: https://store.fmi.uni-sofia.bg/fmi/logic/sqema/ sqema_gwt_20180317_2/K45/SQEMA.html