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Bisimulation

A bisimulation between M = (W, R, V) and M’ = (W', R, V') is a
non-empty binary relation Z C W x W' such that whenever wZw':

Atomic harmony: for each p € At, w € V(p) iff w’ € V/(p)
Zig: if wRv, then 3v/ € W’ such that vZv’' and w'R'V/
Zag: if w'R'V' then dv € W such that vZv’ and wRv

We write M, w <> M/, w' if there is a Z such that wZw’.



Example of a Bisimulation




yO yi y3

It is not the case that M, x <+ M’y
M, x =E0(0LvoOl) My EDO@OLyvoOl)



Bisimulation

A bisimulation between M = (W, R, V) and M’ = (W' R', V') is a
non-empty binary relation Z C W x W' such that whenever wZw':

Atomic harmony: for each p € At, w € V(p) iff w’ € V/(p)
Zig: if wRv, then 3v/ € W’ such that vZv/ and w'R’V/
Zag: if w'R'V' then dv € W such that vZv’ and wRv

» We write M, w < M, w' if there is a Z such that wZw’.
> We write M, w e~ M/ W iff forall 9 € £, M, w = ¢ iff M', v/



Bisimulation
A bisimulation between M = (W, R, V) and M’ = (W' R', V') is a
non-empty binary relation Z C W x W' such that whenever wZw':

Atomic harmony: for each p € At, w € V(p) iff w’ € V/(p)
Zig: if wRv, then 3v/ € W’ such that vZv/ and w'R’V/
Zag: if w'R'V' then dv € W such that vZv’ and wRv
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Lemma. If M, w & M’ w then M, w e~ M’ W',

What about the converse? If two states are modally equivalent, does that imply
that they states must be bisimilar?

» In general, it is not true that modally equivalent states are bisimular. That
is, there are pointed models M, w and M’ w' such that
M, w e M’ W, but it is not the case that M, w & M’ w/

» Lemma On finite models, if M, w e~ M’ w' then M, w < M’ w'.

» The above result can be generalized: On image finite models or
m-saturated models, if M, w «~s M’ w' then M, w < M’ w'.
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From truth in a model to validity on a frame

A frame is a tuple (W, R) where W # @ and RC W x W.

Suppose that F = (W, R) is a frame. A model based on F is a tuple
(W,R, V) where V : At — p(W).
We sometimes write (F, V) for the model based on F.
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There are valuations V4, V2 and V3 such that (Fi, Vi) <
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Can you find a valuation Vj such that (F7, V1), ws = Op — p? No
Can you find a valuation V, such that (F», Vo), vi = Op — p? Yes
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Can you find a valuation V; such that (F,, Vo), vi = p — OOp? No
Can you find a valuation V3 such that (F3, V3),x1 = p — OOp? Yes
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Validity

Valid on a model M = (W, V, R)
M@ foralwe W, M,w = ¢

Valid on a frame F = (W, R)
F = ¢: for all M based on F, forall w e W, M, w |= ¢
for all valuation functions V, for allw € W, (W,R, V), w |= ¢
Valid at a state on a frame F = (W, R) with w € W
F.w = ¢: for all M based on F, M, w |= ¢

Valid in a class F of frames:

e @: forall FEF, Fl=o
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Model validity

N
C w2 w3

M = Oq

validity on a model is not closed under substitution (M [~ Op)
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Frame validity

Some frame validities:
> aT
> Op <> =Op
> (OpAOqg) <> D(pAq)
> d(p—q) = (Op — Dq)
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Frame validity

Some frame validities:
> aT
> Op <> =Op
> (OpAOqg) <> D(pAq)
> d(p—q) = (Op — Dq)

Some frame non-validities:
» OpV O-p (compare with the validity Op vV =Op)
(CpACq) = O(pAq)
O(pVgq) — (OpVOq)
Up—p

>
>
>
> Op — Cp
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