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Temporal Logic

One of the most successful applications of modal logic is in the “logic of time”.

Many variations

▶ discrete or continuous

▶ branching or linear

▶ point based or interval based

V. Goranko and A. Galton. Temporal Logic. Stanford Encyclopedia of Philosophy: http:

//plato.stanford.edu/entries/logic-temporal/.

I. Hodkinson and M. Reynolds. Temporal Logic. Handbook of Modal Logic, 2008.
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Models of Time

T = ⟨T ,<⟩ where

▶ T is a set of time points (or moments),

▶ < ⊆ T × T is the precedence relation: s < t means “time point s
precedes time point t (or s occurs earlier than t)” and

< is typically assumed to be irreflexive and transitive (a strict partial order).

Examples: ⟨N,<⟩, ⟨Z,<⟩, ⟨Q,<⟩, ⟨R,<⟩
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Other properties of <

▶ Linearity: for all s, t ∈ T , s < t or s = t of t < s

▶ Past-linear: for all s, x , y ∈ T , if x < s and y < s, then either x < y or
x = y or y < x

▶ Denseness for all s, t ∈ T , if s < t then there is a z ∈ T such that s < z
and z < t

▶ Discreteness: for all s, t ∈ T , if s < t then there is a z such that (s < z
and there is no u such that s < u and u < z)
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Branching Time

Each moment t ∈ T can be decided into the Past(t) = {s ∈ T | s < t} and
the Future(t) = {s ∈ T | t < s}

Typically, it is assumed that the past is linear, but the future may be branching.

F φ: “it will be the case that φ”

φ will be the case “in the case in the actual course of events” or “no matter
what course of events”
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Branching Time Logics

A branch b in ⟨T ,<⟩ is a maximal linearly ordered subset of T

s ∈ T is on a branch b of T provided s ∈ b (we also say “b is a branch going
through t”).
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Temporal Logics

▶ Linear Time Temporal Logic: Reasoning about computation paths:

F φ: φ is true some time in the future.

A. Pnuelli. A Temporal Logic of Programs. in Proc. 18th IEEE Symposium on Foundations of
Computer Science (1977).

▶ Branching Time Temporal Logic: Allows quantification over paths:

∃F φ: there is a path in which φ is eventually true.

E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons using
Branching-time Temporal-logic Specifications. In Proceedings Workshop on Logic of Programs,
LNCS (1981).
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Interval Values

J. Allen and G. Ferguson. Actions and Events in Interval Temporal Logics. Journal of Logic and
Computation, 1994.

J. Halpern and Y. Shoham. A Propositional Modal Logic of Time Intervals. Journal of the ACM,
38:4, pp. 935 - 962, 1991.

J. van Benthem. Logics of Time. Kluwer, 1991.
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Interval Temporal Logics

Let T = ⟨T ,<⟩ be a frame and I (T ) = {[a, b] | a, b ∈ T and a ≤ b} be the
set of intervals over T

Interval-based relational structure: ⟨I (T ), {RX}⟩ where RX ⊆ I (T )× I (T ).
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Interval Temporal Logics

Intervals of the form [a, a] are called point intervals; if
these are excluded, the resulting semantics is called strict
interval semantics (non-strict otherwise). Our results hold in
either semantics. There are 12 different non-trivial relations
(excluding the equality) between two intervals in a linear
order, often called Allen’s relations [3]: the six relations
depicted in Table I and their inverses. One can naturally
associate a modal operator hXi with each Allen’s relation
RX . For each operator hXi, we denote by hXi its transpose,
corresponding to the inverse relation.

Halpern and Shoham’s logic HS is a multi-modal logic
with formulae built over a set AP of propositional letters,
the propositional connectives _ and ¬, and a set of modal
unary operators associated with all Allen’s relations. For
each subset {RX1 , . . . , RXk

} of these relations, we define
the HS fragment X1X2 . . . Xk, whose formulae are defined
by the grammar:

' ::= p | ⇡ | ¬' | ' _ ' | hX1i' | . . . | hXki',

where ⇡ is a modal constant, true precisely at point intervals.
We omit ⇡ when it is definable in the language or when
the strict semantics is adopted. The other propositional
connectives, like ^ and !, and the dual modal operators
[X] are defined as usual, e.g., [X]' ⌘ ¬hXi¬'.

Let I(D) be the set of all intervals over D. The semantics
of an interval-based temporal logic is given in terms of
interval models M = hD, V i, where V : AP 7! 2I(D) is
the valuation function that assigns to every p 2 AP the
set of intervals V (p) over which it holds. The truth of a
formula over a given interval [a, b] in a model M is defined
by structural induction on formulae:

• M, [a, b] � ⇡ iff a = b;
• M, [a, b] � p iff [a, b] 2 V (p), for all p 2 AP;
• M, [a, b] � ¬ iff it is not the case that M, [a, b] �  ;
• M, [a, b] � ' _  iff M, [a, b] � ' or M, [a, b] �  ;
• M, [a, b] � hXii iff there exists an interval [c, d] such

that [a, b] RXi
[c, d], and M, [c, d] �  ,

Satisfiability is defined as usual.
The notion of sub-interval (contains) can be declined into

two variants, namely, proper sub-interval ([a, b] is a proper
sub-interval of [c, d] if c  a, b  d, and [a, b] 6= [c, d]),
and strict sub-interval (when both c < a and b < d). Both
variants will play a central role in our technical results;
notice that by sub-interval we usually mean the proper one.

III. A SHORT SUMMARY OF UNDECIDABILITY RESULTS

In this section, we first summarize the main undecidability
results for fragments of HS. Then, we state the main results
of this paper (Theorem III.1), which extend the previous
ones under two different aspects: (i) we prove a number of
new undecidability results for proper sub-fragments of logics
that were already known to be undecidable, and (ii) we
show how to adapt various existing undecidability proofs to
a more general class of linear orders. The first undecidability

hAi
hLi
hBi
hEi
hDi
hOi

[a, b]RA[c, d] , b = c

[a, b]RL[c, d] , b < c

[a, b]RB [c, d] , a = c, d < b

[a, b]RE [c, d] , b = d, a < c

[a, b]RD[c, d] , a < c, d < b

[a, b]RO[c, d] , a < c < b < d

a b

c d

c d

c d

c d

c d

c d

Table I
ALLEN’S INTERVAL RELATIONS AND THE CORRESPONDING HS

MODALITIES.

result, for full HS, was obtained by Halpern and Shoham [4].
Since then, several other results have been published, starting
from Lodaya [14], that proved the undecidability of the
fragment BE, when interpreted over dense linear orders,
or, alternatively, over h!,<i, where infinite intervals are
allowed. In [9], Bresolin at al. proved the undecidability
of a number of interesting fragments, such as AD⇤E⇤,
AD⇤O, AD⇤B⇤, AD⇤O, BE, BE, and BE, where, for each
X 2 {A, L,B,E,D,O}, X⇤ denotes either X or X. In [10],
the undecidability of all (HS-)extensions of the fragment O
(and thus of O), except for those with the modalities hLi and
hLi, has been proved when interpreted in any class of linear
orders with at least one infinite ascending (or descending) se-
quence. In [11], the one-modality fragment O alone has been
proved undecidable, but assuming discreteness. Recently,
Marcinkowski et al. have first shown the undecidability of
B⇤D⇤ on finite and discrete linear orders [15], and, then,
strengthened that result to the one-modality fragments D and
D [12].

Here, we first extend and complete the results from [10],
[11] by providing an undecidability proof that assumes
neither discreteness nor the presence of an infinite sequence.
Second, we strengthen the undecidability results given in [9]
by (i) proving that the logics B⇤E⇤ are undecidable over the
class of finite linear orders, and (ii) by showing that the weak
fragments A⇤D⇤ are undecidable with respect to all relevant
classes of linear orders. As a consequence, we obtain a
very sharp characterization of the decidability/undecidability
border for the family of HS-fragments, as the undecidability
for the mentioned logics holds over the class of all finite
linear orders as well as over the classical orders based on
N, Z, Q, and R.

Theorem III.1. The satisfiability problem for the HS frag-
ments O, O, A⇤D⇤, B⇤E⇤ is undecidable in any class of
linear orders that contains, for each n > 0, at least one
linear order with length greater than n.

Due to space constraints, we only detail the case of O.
First, we show how to relax the discreteness hypothesis;
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Propositional Modal Language

Language: Let At be a set of atomic propositions. The set of propositional
modal formulas, denoted L(At), is the smallest set of formulas generated by the
following grammar:

p | ⊥ | ¬φ | (φ ∨ ψ) | 3φ

where p ∈ At.
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Frame: ⟨W ,R⟩, where W ̸= ∅ and R ⊆ W ×W

Model: Suppose that F = ⟨W ,R⟩ is a frame. The tuple ⟨W ,R ,V ⟩ is a model
based on F where V : At → ℘(W ) is a valuation function.

▶ w ∈ V (p) means that p is true at w .

Pointed Model Suppose that M = ⟨W ,R ,V ⟩ is a model. If w ∈ W , then
(M,w) is called a pointed model.
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Truth of Modal Formulas

Suppose that M = ⟨W ,R ,V ⟩ is a model. Truth of a modal formula φ ∈ L(At)
at a state w in M, denoted M,w |= φ, is defined as follows:

▶ M,w |= p iff w ∈ V (p) (where p ∈ At)

▶ M,w ̸|= ⊥
▶ M,w |= ¬φ iff M,w ̸|= φ

▶ M,w |= φ ∨ ψ iff M,w |= φ or M,w |= ψ

▶ M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

▶ M,w |= φ → ψ iff if M,w |= φ, then M,w |= ψ
M,w |= φ → ψ iff either M,w ̸|= φ or M,w |= ψ

▶ M,w |= 3φ iff there is a v ∈ W such that wRv and M, v |= φ

▶ M,w |= 2φ iff for all v ∈ W , if wRv then M, v |= φ
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Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w4 |= B ∧ C
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Example

Aw1
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Example

Aw1

Bw2 B w3
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Example

Aw1

Bw2 B w3

B,C w4 A,B w5

w5 |= ¬3B∧
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Aw1
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B,C w4 A,B w5

w1 |= 2B ∧ B?
w1 |= 33B?
w1 |= 333B?
w1 |= 22B?
w1 |= 23C?
w1 |= 33C?
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We can now see why the two formalizations of Aristotle’s Sea Battle Argument
are not equivalent: 2(A → B) is is not equivalent with A → 2B .

A,B

w1

C

w2

w1 |= 2(A → B) but w1 ̸|= A → 2B
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Definability

Suppose that M = ⟨W ,R ,V ⟩ is a relational model.

[[·]]M : L → ℘(W ) defined as [[φ]]M = {w | M,w |= φ}.

[[p]]M = V (p)

[[¬φ]]M = W − [[φ]]M
[[φ ∧ ψ]]M = [[φ]]M ∩ [[ψ]]M
[[2φ]]M = {w | R(w) ⊆ X}

define mR(X ) = {w | R(w) ⊆ X}, so [[2φ]]M = mR([[φ]]M)

X ⊆ W is definable by modal formula if there is some φ ∈ L such that
X = [[φ]]M.
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Defining States

w2

w1 w4

w3

▶ {w4} = 2⊥
▶ {w3} = 32⊥∧22⊥
▶ {w2} = 32⊥∧33⊤
▶ {w1} = 3(32⊥∧22⊥)
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Defining States

w2

w1 w4

w3

▶ {w4} = [[2⊥]]

▶ {w2,w3} = [[32⊥∧22⊥]]

▶ {w1} = [[3(32⊥∧22⊥)]]
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Distinguishing States

Aw1

B

w2

Av1

B

v2

A v3

What is the difference between states w1 and v1?
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Distinguishing States

Aw1

B

w2

Av1

B

v2

A v3

Is there a modal formula true at w1 but not at v1?
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B

v2

A v3
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Distinguishing States

Aw1

B

w2

Av1

B

v2

A v3

What about now? Is there a modal formula true at w1 but not v1?
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Distinguishing States

Aw1

B

w2

Av1

B

v2

A v3

No modal formula can distinguish w1 and v1!
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φ is satisfiable means that there is a model M = ⟨W ,R ,V ⟩ and w ∈ W such
that M,w |= φ.

21



Bisimulation

A bisimulation between M = ⟨W ,R ,V ⟩ and M′ = ⟨W ′,R ′,V ′⟩ is a
non-empty binary relation Z ⊆ W ×W ′ such that whenever wZw ′:

Atomic harmony: for each p ∈ At, w ∈ V (p) iff w ′ ∈ V ′(p)
Zig: if wRv , then ∃v ′ ∈ W ′ such that vZv ′ and w ′R ′v ′

Zag: if w ′R ′v ′ then ∃v ∈ W such that vZv ′ and wRv
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