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Temporal Logic

One of the most successful applications of modal logic is in the “logic of time”.
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Temporal Logic

One of the most successful applications of modal logic is in the “logic of time”.

Many variations
> discrete or continuous
» branching or linear

» point based or interval based

V. Goranko and A. Galton. Temporal Logic. Stanford Encyclopedia of Philosophy: http:
//plato.stanford.edu/entries/logic-temporal/.

I. Hodkinson and M. Reynolds. Temporal Logic. Handbook of Modal Logic, 2008.
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Models of Time

T = (T, <) where

» T is a set of time points (or moments),
> < C T x T is the precedence relation: s < t means “time point s

”

precedes time point t (or s occurs earlier than t)" and
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Models of Time

T = (T, <) where

» T is a set of time points (or moments),

> < C T x T is the precedence relation: s < t means “time point s
precedes time point t (or s occurs earlier than t)" and

< is typically assumed to be irreflexive and transitive (a strict partial order).

Examples: (N, <), (Z, <), (Q, <), (R, <)



Other properties of <

» Linearity: foralls,t € T,s<tors=toft<s

» Past-linear: for all s,x,y € T, if x < s and y < s, then either x < y or
X=yory<x

» Denseness for all s,t € T, if s < t then there isa z € T such that s < z
and z < t

» Discreteness: for all s,t € T, if s < t then there is a z such that (s < z
and there is no u such that s < v and u < z)



Branching Time

Each moment t € T can be decided into the Past(t) = {s € T | s < t} and
the Future(t) = {s€ T | t < s}

Typically, it is assumed that the past is linear, but the future may be branching.



Branching Time

Each moment t € T can be decided into the Past(t) = {s € T | s < t} and
the Future(t) = {s€ T | t < s}

Typically, it is assumed that the past is linear, but the future may be branching.

F: “it will be the case that ¢

@ will be the case “in the case in the actual course of events” or “no matter
what course of events”



Branching Time Logics

A branch b in (T, <) is a maximal linearly ordered subset of T

s € T ison a branch b of T provided s € b (we also say “b is a branch going
through t").



Temporal Logics



Temporal Logics

» Linear Time Temporal Logic. Reasoning about computation paths:
F@: @ is true some time in the future.

A. Pnuelli. A Temporal Logic of Programs. in Proc. 18th IEEE Symposium on Foundations of
Computer Science (1977).



Temporal Logics

» Linear Time Temporal Logic. Reasoning about computation paths:
F@: @ is true some time in the future.

A. Pnuelli. A Temporal Logic of Programs. in Proc. 18th IEEE Symposium on Foundations of
Computer Science (1977).

» Branching Time Temporal Logic: Allows quantification over paths:
JF ¢: there is a path in which ¢ is eventually true.

E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons using
Branching-time Temporal-logic Specifications. In Proceedings Workshop on Logic of Programs,
LNCS (1981).



Interval Values

J. Allen and G. Ferguson. Actions and Events in Interval Temporal Logics. Journal of Logic and
Computation, 1994.

J. Halpern and Y. Shoham. A Propositional Modal Logic of Time Intervals. Journal of the ACM,
38:4, pp. 935 - 962, 1991.

J. van Benthem. Logics of Time. Kluwer, 1991.



Interval Temporal Logics

Let 7 = (T, <) be aframeand I(T) ={[a b] | a,b € T and a < b} be the
set of intervals over T

Interval-based relational structure: (/(7),{Rx}) where Rx C I(T) x I(T).



Interval Temporal Logics

(A)
(L)
(B)
(E)
(D)
(0)

a,bjRalc,d] & b=c
a,b|Rr[c,d] & b<c
a,b|Rplc,d] & a=c,d<b
a,b|Rgle,d] & b=d,a<c
a,b|Rplc,d| < a<c,d<b

[
[
[
[
[
[

a,blRolc,d] & a<c<b<d
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Propositional Modal Language

Language: Let At be a set of atomic propositions. The set of propositional
modal formulas, denoted £(At), is the smallest set of formulas generated by the

following grammar:

plL]-el(eVy)|Cp
where p € At.

11



Frame: (W, R), where W # @ and RC W x W
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Frame: (W, R), where W # @ and RC W x W

Model: Suppose that F = (W, R) is a frame. The tuple (W, R, V) is a model
based on F where V : At — (W) is a valuation function.

» w € V(p) means that p is true at w.
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Frame: (W, R), where W # @ and RC W x W

Model: Suppose that F = (W, R) is a frame. The tuple (W, R, V) is a model
based on F where V : At — (W) is a valuation function.

» w € V(p) means that p is true at w.

Pointed Model Suppose that M = (W, R, V) is a model. If w € W, then
(M, w) is called a pointed model.

12



Truth of Modal Formulas

Suppose that M = (W, R, V) is a model. Truth of a modal formula ¢ € L£(At)
at a state w in M, denoted M, w = ¢, is defined as follows:

> M,w = piff we V(p) (where p € At)

13



Truth of Modal Formulas

Suppose that M = (W, R, V) is a model. Truth of a modal formula ¢ € L£(At)
at a state w in M, denoted M, w = ¢, is defined as follows:

vVvyVvyVvyyvVyy

S XIXIXXX

,w = piff w e V(p) (where p € At)

owoE L

w = o iff M, w = ¢
wEeVYPIfMwE=Ee@or M,wE=y
WwWEeAPIFFMwlE=e@and M,wl=1y
wE @ — piffif M,w = @, then M, w = ¢

iff either M, w [= @ or M, w = ¢
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Truth of Modal Formulas

Suppose that M = (W, R, V) is a model. Truth of a modal formula ¢ € L£(At)
at a state w in M, denoted M, w = ¢, is defined as follows:

M,w = piff w e V(p) (where p € At)
M, w = L
M, w = —¢iff M, w = ¢
MwEeVYiff Miwl=@or M,w =1
MwEeAPIff M,wi=¢and M,w =19
M,w =@ — piffif M,w = ¢, then M, w = ¢
iff either M, w [= ¢ or M, w = ¢
M, w [= O iff there is a v € W such that wRv and M, v |= ¢
M, w = 0Og iff for all v € W, if wRv then M, v |= ¢

vVvyVvyVvyyvVyy

vy



Truth of Modal Formulas

> MwEeAPiff M,wl=g@and M, w = ¢

> M,w =@ — piffif M,w = ¢, then M, w =
iff either M, w = @ or M, w = ¢

» M,w = Og iff for all v € W, if wRv then M, v = ¢

14



Example
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wi = 0B A B?
wy = OOB?
B w = OOOB?
wi = 00B?
/ 0 w = 00C?
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wq [75 OBAB

wy = OOB?
" wp = OOOB?

wy = OOB?

/ Q wi ‘: ooC?
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wy = OBAB
@ w | OOB
w1

w | OOOB
wi = 0O0OB?
/ Q wy = OOC?

w3 w1 ’: OOC?
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w1 = OBAB

wi = OOB
N w = OOOB

wy = OOB

/ ﬂ w1 |: oo C?
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w1 = OBAB
wi = OCOB
N w £ OOOB
wy = OOB
/ ﬂ w1 |: aoC?
wy  wi = O0C?
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wi = OBAB
wi = OOB
- wy = OOOB
wy = 0OOB
/ ﬂ wy = O0OC
vy wi = OOC?
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wi = OBAB
wi = OCOB
- wi | OOOB

wi = 0OOB
/ \ ﬂ wy = OOC

w3 wy = OOC?
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wy b& OBAB
wi = OCOB
" w = OOOB

wi = 0O0B
/ \ Q wi [# oo C

v wy = 0OC
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wy b& OBAB
wi = OCOB
" w = OOOB

wi = 0O0B
/ \ 0 wy = OOC

v wy = 0OC
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We can now see why the two formalizations of Aristotle’s Sea Battle Argument
are not equivalent. O(A — B) is is not equivalent with A — OB.
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We can now see why the two formalizations of Aristotle’s Sea Battle Argument
are not equivalent. O(A — B) is is not equivalent with A — OB.

0
(re—(O)

w1 w2
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We can now see why the two formalizations of Aristotle’s Sea Battle Argument
are not equivalent. O(A — B) is is not equivalent with A — OB.

0
(re—(O)

w1 w2

wi =0(A— B) butwy = A— OB
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Definability

Suppose that M = (W, R, V) is a relational model.
[-Im : £ — (W) defined as [y = {w | M, w E ¢}.

[PIm
[=¢lm
[o A ¢lm
B¢l

V(p)

W — [o]m

[l O [T

{w [ R(w) C X}

define mg(X) = {w | R(w) C X}, so [B¢]ym = mr([@]m)

18



Definability
Suppose that M = (W, R, V) is a relational model.
[-Im : £ — (W) defined as [y = {w | M, w E ¢}.

[Plp = V(p)
[~elm = W—lolrm
[oAdIm = [elm N [Pl
[Belm = {w][R(w) < X}
define mg(X) = {w | R(w) C X}, so [B¢]ym = mr([@]m)

X C W is definable by modal formula if there is some ¢ € L such that
X = [glm-

18



Defining States

e
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Defining States

o I
e \O e
w1 7 = w —
Q\ SO
ws Q



Defining States

w QZD )
Q/ \Q : ;% ; E[EJD_]]L/\DDJ_]]
wi wa b {up) =
N {un) =
W3O



Defining States

;«Oi > {ws} =[OL]
> {w3} = [COLADOL]
wi Q Q wa > {w} =[[COLACOT]
> {Wl} =
N



Defining States

R e
> {w3} =[COLADOL]
w1 O Q wa > {m} =[COLACOT]
\ / > {m}=[O(CO0LADOL)]
-0



Defining States

w Q
> {ws} = [O1]
. Q Q " Db
O



Distinguishing States
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What is the difference between states wy and v 7
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Distinguishing States
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Distinguishing States
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Is there a modal formula true at wy but not at v¢?
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Distinguishing States
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Distinguishing States
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Distinguishing States
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Distinguishing States
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Distinguishing States
O 0
wi V1
S T
v3
=0 =04

V2

What about now? Is there a modal formula true at wy but not v¢?
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Distinguishing States
O 0
wi V1
S T
v3
=0 =04

V2

No modal formula can distinguish wy and vq!
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¢ is satisfiable means that there is a model M = (W, R, V) and w € W such
that M, w = ¢.

21



Bisimulation

A bisimulation between M = (W, R, V) and M’ = (W' R', V') is a
non-empty binary relation Z C W x W' such that whenever wZw':

Atomic harmony: for each p € At, w € V(p) iff w’ € V/(p)
Zig: if wRv, then 3v/ € W’ such that vZv/ and w'R'V/
Zag: if w'R'V' then dv € W such that vZv’ and wRv
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