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First Order Modal Language

Let V be a set of variables.

A term is any variable: T = V (we will extend the set of terms later when we
add constants and function symbols to the language)

Let Pred be a set of predicate symbols.

A formula is constructed as follows

φ := t1 = t2 | P(t1, . . . , tn) | ¬φ | (φ ∧ φ) | 2φ | 3φ | (∀x)φ | (∃x)φ

where P ∈ Pred of arity n, ti ∈ T for i = 1, . . . , n and x ∈ V

(Sometimes equality is not in the language)
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Constant vs. Varying Domains

A Kripke frame is a tuple ⟨W ,R⟩ where W ̸= ∅ and R ⊆ W ×W is a relation
on W

A constant domain Kripke skeleton is a tuple ⟨W ,R ,D⟩ where ⟨W ,R⟩ is a
frame and D ̸= ∅ is a non-empty set.

A varying domain Kripke skeleton is a tuple ⟨W ,R ,D⟩ where ⟨W ,R⟩ is a
frame and for each w ∈ W , D(w) is a set (the domain at w). Let the domain
of the model be D =

⋃
w∈W D(w).
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Substitutions

Suppose that D is the domain of the model.

A substitution is any function s : V → D (V the set of variables).

A substitution s ′ is said to be an x-variant of s, denoted s ∼x s ′, if for all
y ∈ V , if y ̸= x , then s(y) = s ′(y).
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First Order Interpretations

Let D be the domain.

An interpretation I assigns an n-ary relation to each n-ary predicate symbol and
an element of the domain to each constant symbol:

If P is an n-ary predicate symbol, then I (P) ⊆ Dn
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Interpretation in a Kripke Model

Let D be the domain for a Kripke model with worlds W .

An interpretation I assigns an n-ary relation to each n-ary predicate symbol and
world w and an element of the domain to each constant symbol and world w :

If P is an n-ary predicate symbol, then I (P ,w) ⊆ Dn
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Truth

Let M = ⟨W ,R ,D, I ⟩ be a (varying/constant) domain Kripke model:

▶ M,w |=s x = y iff s(x) = s(y)

▶ M,w |=s P(x1, . . . , xn) iff ⟨s(x1), . . . , s(xn)⟩ ∈ I (P ,w)

▶ M,w |=s ¬φ iff M,w ̸|=s φ

▶ M,w |=s φ ∧ ψ iff M,w |=s φ and M,w |=s ψ
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Varying Domains

Let M = ⟨W ,R ,D, I ⟩ be a varying domain Kripke model:

▶ M,w |=s 2φ iff for all v ∈ W , if wRv , then M, v |=s φ

▶ M,w |=s ∀xφ iff for all s ′, if s ∼x s ′ and s ′(x) ∈ D(w), then
M,w |=s ′ φ

▶ Actualist quantification: only quantifying over objects that exist

▶ ∀xP(x) → P(y) is not valid (cf. Free logic)

▶ Can add possibilist quantifiers

▶ We can say “y exists”: ∃x(x = y),
“y doesn’t exists”: ¬∃x(x = y),
but we cannot express “there are non-existents”
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Constant Domain Models
Let M = ⟨W ,R ,D, I ⟩ be a constant domain Kripke model:

▶ M,w |=s 2φ iff for all v ∈ W , if wRv , then M, v |=s φ

▶ M,w |=s ∀xφ iff for all s ′, if s ∼x s ′, then M,w |=s ′ φ

▶ Possibilist quantification: quantifying over all objects (even non-existent
objects)

▶ ∀xP(x) → P(y) is valid

▶ Can add actualist quantifiers:
▶ Introduce an existence predicate E (typically assume I (E ,w) ̸= ∅ for all

w ∈ W and
⋃

w I (E ,w) = D)
▶ ∀Exφ := ∀x(E (x) → φ)
▶ ∃Exφ := ∃x(E (x) ∧ φ)
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Barcan Schemas

▶ Barcan formula (BF ): ∀x2φ(x) → 2∀xφ(x)

▶ converse Barcan formula (CBF ): 2∀xφ(x) → ∀x2φ(x)

Lemma. CBF is valid in a varying domain relational frame iff the frame is
monotonic.

A varying domain is monotonic if for all w , v ∈ W , if wRv , then D(w) ⊆ D(v)

Lemma. BF is valid in a varying domain relational frame iff the frame is
anti-monotonic

A varying domain is anti-monotonic if for all w , v ∈ W , if wRv , then
D(v) ⊆ D(w)
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▶ Since varying domain semantics can be simulated using constant domain
semantics and relativized quantifiers, from a semantic point of view there is
really little point in studying the varying domain version in much detail.

▶ Axiomatic systems intended for constant domain systems have more
complex completeness proofs.
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Rigidity

Predicates and constants are not rigid. Their interpretation changes from world
to world.

Substitutions do not depend on worlds, so the interpretation is of variables is
rigid

▶ (x = y) → 2(x = y) is valid

▶ (x ̸= y) → 2(x ̸= y) is valid

▶ How should we interpret 3P(c), where c is a constant? Two possibilities:
▶ The current interpretation of c has the “Possible-P” property
▶ there is a possible world such that c (interpreted in that possible world) has

the property P
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M. Fitting. Intensional Logic. Stanford Encyclopedia of Philosophy, 2006. Substantive revision
2015.

M. Fitting. First-order intensional logic. Annals of Pure and Applied Logic, 127: 171–193, 2004.
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First Order Intensional Logic

In addition to objects there will be what we call intensions or intensional objects
or concepts.

Typical informal intensions are the morning star, the oldest person in the world,
or simply that.

Intensions designate different objects under different circumstances—they are
non-rigid designators.

They will be modeled by functions from possible worlds to objects. There will be
quantification over intensions, as well as quantification over objects.
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An intension f picks out an object at each world.

Given a unary predicate P , P(f ) could mean the intension f has the property P
or the object designated by f has the property P . (Both make sense.)

De Re/De Dicto issues:

▶ P(f ) is true at w if the object picked out by f at w has property P

▶ What about 3P(f )?
▶ (de re) 3P(f ) is true at w if the object picked out by f at w has the

property P at an accessible world v
▶ (de dicto) 3P(f ) is true at w if there is an accessible world v such that the

object picked out by f at v has the property P
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Predicate Abstraction

▶ (de re) 3P(f ) is true at w if the object picked out by f at w has the
property P at an accessible world v .

⟨λx .3P(x)⟩(f )

▶ (de dicto) 3P(f ) is true at w if there is an accessible world v such that
the object picked out by f at v has the property P .

3⟨λx .P(x)⟩(f )
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Suppose that the possible worlds are people, and f is the favorite-book concept
picking out, for each person, that person’s favorite book. And suppose P is
intended to be the is-an-important-concept predicate.

For a person who considers reading important, P(f) will most likely be true—the
concept of a favorite book would be important for that person.

Let us say Q is intended to be the is-an-important-book predicate.
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I certainly think ⟨λx .Q(x)⟩(f ) is true—for me it says my favorite book is an
important book (for me).

I would not think ⟨λx .2Q(x)⟩(f ) to be true—for me it says that my favorite
book is an important book for everybody.

On the other hand I probably would think that 2⟨λx .Q(x)⟩(f ) is true—for me it
says that everybody thinks their favorite book is important.
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The King of Sweden could be taller than he is now.

m is an intensional variable selecting the monarch in a world.

3T (m,m): The problem is that the ms should pick out the monarchs in
different worlds.

⟨λy .3⟨λx .T (x , y)⟩(m)⟩(m)
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A FOIL model is a structure M = ⟨W ,R ,DO ,DI , I ⟩, where W ̸= ∅,
R ⊆ W ×W , DO is a non-empty set of objects, and DI is a non-empty set of
functions from W to DO . Finally, I is an interpretation assigning to each
predicate symbol P a relation of an appropriate type.

M,w |=s ⟨λx .φ⟩(f ) iff M,w |=s ′ φ where for all y ∈ V , if y ̸= x , then
s ′(y) = s(y) and s ′(x) = s(f )(w).
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Valid:
∀x∀y((x = y) → 2(x = y)))

∀x∀y((x ̸= y) → 2(x ̸= y)))

∀f ∀g [⟨λx , y .(x = y)⟩(f , g) → ⟨λx , y .2(x = y)⟩(f , g)]

Not Valid:

∀f ∀g [⟨λx , y .(x = y)⟩(f , g) → 2⟨λx , y .(x = y)⟩(f , g)]
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Constants and Function Symbols

M. Fitting. On Height and Happiness. in Rohit Parikh on Logic, Language and Society, Springer
Outstanding Contributions to Logic, C. Baskent, L. Moss, R. Ramanujam editors, pages 235-258,
2017.
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The King of Sweden could be taller than he is now.

⟨λy .3⟨λx .T (x , y)⟩(m)⟩(m)

Alice could be taller than she is now.

⟨λy .3⟨λx .T (x , y)⟩(a)⟩(a)

Problem: Names are rigid.

⟨λy .2⟨λx .x = y⟩(a)⟩(a)

So, the above two formulas imply:

⟨λx .3T (x , x)⟩(a)
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Add function symbols (and constants)

Let h(a) be the height of a

The point is that even though a is rigid, h(a) can vary from world to world

Alice could be taller than she is now.

⟨λy .3⟨λx .G (x , y)⟩(h(a))⟩(h(a))
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