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From Propositional to First Order Modal Logic

“[W]hat is first-order modal logic for? What do quantifiers add to the mix?

Motivations based on natural language and philosophy are still central, though
we have a much richer variety of things we can potentially formalize and
investigate. Of course we want a semantics that agrees with our intuitive
understanding, but now intuitions can, and do, differ substantially from person to
person. Are designators rigid? Can objects exist in more than one possible world?
Should there be a distinction between identity and necessary identity? And for
that matter, is the whole subject a mistake from the beginning, as Quine would
have it? Rather than a semantics on which we all generally agree, quite a
disparate range has been proposed. We are still exploring what first-order modal
semantics should be; the propositional case was settled long ago.”
asdf fadf (Fitting, pg. 1, First Order Intensional Logic)
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First Order Modal Language

Let V be a set of variables.

A term is any variable: T = V (we will extend the set of terms later when we
add constants and function symbols to the language)

Let Pred be a set of predicate symbols.

A formula is constructed as follows

φ := t1 = t2 | P(t1, . . . , tn) | ¬φ | (φ ∧ φ) | 2φ | 3φ | (∀x)φ | (∃x)φ

where P ∈ Pred of arity n, ti ∈ T for i = 1, . . . , n and x ∈ V

(Sometimes equality is not in the language)
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▶ ∀x2P(x) ∃x3P(x)

▶ 2∀xP(x) 3∃xP(x)

▶ ∃x2P(x)
▶ 2∃xP(x)

▶ 2∀xφ(x) → ∀x2φ(x)

▶ ∀x2φ(x) → 2∀xφ(x)
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De Re/De Dicto Ambiguity

Everything is necessarily F

de dicto: It is necessary that everything is F

2(∀x)F (x)

de re: Each thing is such that it is necessarily F

(∀x)2F (x)
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De Re/De Dicto Ambiguity

Something necessarily exists

de dicto: It is necessary that something exists

2(∃x)E (x)
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De Re/De Dicto Ambiguity

The number of planets is necessarily even

de dicto: The proposition that the number of planets is even is necessary.

2⟨λx .x is even⟩(t)

de re: Of the number of planets, that number is necessarily even.

⟨λx .2(x is even)⟩(t)
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Lambda Notation

Describing Functions:

▶ f : R → R, where for all x ∈ R, f (x) = x2

▶ x 7→ x2

▶ λx .x2

Beta Reduction:

▶ f (3) = 9

▶ (λx .x2)(3) = 32
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De Re/De Dicto Ambiguity

There is no de re/de dicto ambiguity in formulas with free variables: E.g.,
2(x is a Democrat)

The U.S. President will always be a Democrat.
Understood de re this is true, but understood de dicto, this is not true.

Joe Biden will always be a Democrat.
Understood both de re and de dicto, this is true.
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De Re/De Dicto Ambiguity

The U.S. President will always be a Democrat.
Understood de re this is true, but understood de dicto, this is not true.

Joe Biden will always be a Democrat.
Understood both de re and de dicto, this is true.

Does the difference in truth value show that temporality has more to do
with how the object is specified than with the object itself? Hardly. It
depends on the fact that the Presidency will be changing hands, and Joe
Biden only temporarily holds that office. In the world of 2022, the two
coincide; but in later worlds, then don’t.

(Fitting & Mendelsohn, p. 170)
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Constant vs. Varying Domains

A Kripke frame is a tuple ⟨W ,R⟩ where W ̸= ∅ and R ⊆ W ×W is a relation
on W

A constant domain Kripke skeleton is a tuple ⟨W ,R ,D⟩ where ⟨W ,R⟩ is a
frame and D ̸= ∅ is a non-empty set.

A varying domain Kripke skeleton is a tuple ⟨W ,R ,D⟩ where ⟨W ,R⟩ is a
frame and for each w ∈ W , D(w) is a set (the domain at w). Let the domain
of the model be D =

⋃
w∈W D(w).
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Substitutions

Suppose that D is the domain of the model.

A substitution is any function s : V → D (V the set of variables).

A substitution s ′ is said to be an x-variant of s, denoted s ∼x s ′, if for all
y ∈ V , if y ̸= x , then s(y) = s ′(y).
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First Order Interpretations

Let D be the domain.

An interpretation I assigns an n-ary relation to each n-ary predicate symbol and
an element of the domain to each constant symbol:

If P is an n-ary predicate symbol, then I (P) ⊆ Dn

If t ∈ T is a term, I is an interpretation and s is a substitution, then t I ,s ∈ D,
where t I ,s is s(t) if t ∈ V
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Interpretation in a Kripke Model

Let D be the domain for a Kripke model with worlds W .

An interpretation I assigns an n-ary relation to each n-ary predicate symbol and
world w and an element of the domain to each constant symbol and world w :

If P is an n-ary predicate symbol, then I (P ,w) ⊆ Dn

If t ∈ T is a term, I is an interpretation and s is a substitution and w ∈ W ,
then t I ,s,w ∈ D, where t I ,s,w is s(t) if t ∈ V
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Truth

Let M = ⟨W ,R ,D, I ⟩ be a (varying/constant) domain Kripke model:

▶ M,w |=s t1 = t2 iff t I ,s,w1 = t I ,s,w2

▶ M,w |=s P(t1, . . . , tn) iff ⟨t I ,s,w1 , . . . , t I ,s,wn ⟩ ∈ I (P ,w)

▶ M,w |=s ¬φ iff M,w ̸|=s φ

▶ M,w |=s φ ∧ ψ iff M,w |=s φ and M,w |=s ψ
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Varying Domains

Let M = ⟨W ,R ,D, I ⟩ be a varying domain Kripke model:

▶ M,w |=s 2φ iff for all v ∈ W , if wRv , then M, v |=s φ

▶ M,w |=s ∀xφ iff for all s ′, if s ∼x s ′ and s ′(x) ∈ D(w), then
M,w |=s ′ φ

▶ Actualist quantification: only quantifying over objects that exist

▶ ∀xP(x) → P(y) is not valid (cf. Free logic)

▶ Can add possibilist quantifiers

▶ We can say “y exists”: ∃x(x = y),
“y doesn’t exists”: ¬∃x(x = y),
but we cannot express “there are non-existents”
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Constant Domain Models
Let M = ⟨W ,R ,D, I ⟩ be a constant domain Kripke model:

▶ M,w |=s 2φ iff for all v ∈ W , if wRv , then M, v |=s φ

▶ M,w |=s ∀xφ iff for all s ′, if s ∼x s ′, then M,w |=s ′ φ

▶ Possibilist quantification: quantifying over all objects (even non-existent
objects)

▶ ∀xP(x) → P(y) is valid

▶ Can add actualist quantifiers:
▶ Introduce an existence predicate E (typically assume I (E ,w) ̸= ∅ for all

w ∈ W and
⋃

w I (E ,w) = D)
▶ ∀Exφ := ∀x(E (x) → φ)
▶ ∃Exφ := ∃x(E (x) ∧ φ)
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Barcan Schemas

▶ Barcan formula (BF ): ∀x2φ(x) → 2∀xφ(x)

▶ converse Barcan formula (CBF ): 2∀xφ(x) → ∀x2φ(x)

Lemma. CBF is valid in a varying domain relational frame iff the frame is
monotonic.

A varying domain is monotonic if for all w , v ∈ W , if wRv , then D(w) ⊆ D(v)

Lemma. BF is valid in a varying domain relational frame iff the frame is
anti-monotonic

A varying domain is anti-monotonic if for all w , v ∈ W , if wRv , then
D(v) ⊆ D(w)
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