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Semantics for Modal Logic

▶ Relational Models

▶ Neighborhood Models

▶ Algebraic Models

▶ Models based on General Frames
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A logic L ⊆ L is a normal modal logic if

▶ L contains all tautologies of classical propositional logic

▶ L is closed under modus ponens

▶ L is closed under uniform substitution

▶ L is closed under necessitation

▶ 2(p → q) → (2p → 2q) ∈ L

Let K be the smallest normal modal logic.
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φ is globally true in a Kripke model M, written M |= φ, if M,w |= φ for all
w ∈ M

φ is valid in a Kripke frame F , written F |= φ, if M |= φ for all M based on F

φ is valid over a class F of frames if for all F ∈ F, F |= φ
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For a class F of frames, let Log(F) = {φ | F |= φ for all F ∈ F}

A logic L is Kripke complete if there is a class F of Kripke frames for which
L = Log(F). Otherwise, it is Kripke incomplete

Let Fr(L) = {F | F |= φ for all φ ∈ L}
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Theorem (Thomason 1972; Fine 1975, Thomason 1974). There are Kripke
incomplete logics.
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Warm-up exercises
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▶ F |= (3φ ∧3ψ) → (3(φ ∧3ψ) ∨3(φ ∧ ψ) ∨3(3φ ∧ ψ)) iff F
non-branching to the right (for all w , v , x if wRv and wRx then either vRx
or xRv or v = x).

▶ F |= 2φ → 3φ iff F is unbounded to the right (for all w there is a v such
that wRv).

▶ F |= 2(2φ → φ) → 2φ iff F is transitive and converse well-founded.
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Consider the frame F = ⟨N,<⟩.

▶ F ̸|= 23p → 32p

Consider a model M = ⟨N,<,V ⟩, where V (p) = E = {2n | n ∈ N}.
M, 0 |= 23p: For every number greater than 0, there is some larger
number that is even.
M, 0 ̸|= 32p: There is no number greater than 0 such that every larger
number is even.

▶ For any model M = ⟨N,<,V ⟩, if V (p) is finite or cofinite, then for all
n ∈ N

M, n |= 23p → 32p
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Temporal Logic

Let M = ⟨T ,R ,V ⟩ be a Kripke model.

▶ M, t |= F φ iff there exists a t ′ such that tRt ′ and M, t ′ |= φ

▶ M, t |= Pφ iff there exists a t ′ such that t ′Rt and M, t ′ |= φ

▶ M, t |= G φ iff for all t ′, if tRt ′ then M, t ′ |= φ

▶ M, t |= Hφ iff for all t ′, if t ′Rt then M, t ′ |= φ
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Temporal Logic

The minimal temporal logic Kt contains the following axiom schemes and rules:

▶ Propositional logic

▶ G (φ → ψ) → (G φ → Gψ)

▶ H(φ → ψ) → (Hφ → Hψ)

▶ φ → GPφ

▶ φ → HF φ

▶ From φ infer G φ

▶ From φ infer Hφ

▶ Modus Ponens
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Temporal Logic

Let KtTho be the temporal logic extending Kt with the axiom schemes

▶ Fp ∧ Fq → (F (p ∧ Fq) ∨ F (p ∧ q) ∨ F (Fp ∧ q))

▶ Gp → Fp

▶ H(Hp → p) → Hp

KtThoM extends KtTho with the axiom scheme GF φ → FG φ.
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Fact
KtTho is consistent.

Fact
If F = ⟨T ,R⟩ is a frame for KtTho, then for t ∈ T , {u | tRu} is an unbounded
strict total order.

Fact
If F = ⟨T ,R⟩ is a frame for KtTho, then F ̸|= GFp → FGp.

Fact
The logic KtThoM Kripke incomplete (i.e., KtThoM is not the logic of any
class of frames).

Fact
The logic KtThoM is consistent.
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▶ Boolean Algebra with Operators

▶ General Frames
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Lattice

A lattice is an algebra A = (A,∧,∨) where A is a set (called the carrier set or
the domain) and ∧ and ∨ are binary operators (i.e., functions mapping pairs of
elements from A to elements of A) satisfying the following equations: for all
x , y , z ∈ A:

(1a) x ∨ x = x (1b) x ∧ x = x
(2a) x ∨ y = y ∨ x (2b) x ∧ y = y ∧ x
(3a) x ∨ (y ∨ z) = (x ∨ y) ∨ z (2b) x ∧ (y ∧ z) = (x ∧ y) ∧ z
(4a) x ∨ (x ∧ y) = x (4b) x ∧ (x ∨ y) = x
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Boolean Algebra
A = (A,∧,∨) is a distributive lattice if A is a lattice and the following
equations are satisfied: for all x , y , z ∈ A

(5a) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (5b) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

A (distributive) lattice A is bounded if there are 0 ∈ A and 1 ∈ A such that: for
all x ∈ A,

(6a) x ∨ 1 = 1 (6b) x ∧ 1 = x
(7a) x ∨ 0 = x (7b) x ∧ 0 = 0

The structure A = (A,∧,∨,−) is Boolean algebra if (A,∧,∨) is a bounded
distributive lattice, − is a unary operator on A satisfying the following equations:
for all x ∈ A,

(8a) x ∨−x = 1 (8b) x ∧−x = 0
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Examples of Boolean Algebras

▶ 2 = ({0, 1},∧,∨,−) where 0 ≤ 1 is a Boolean algebra, −0 = 1 and
−1 = 0.

▶ For a set W ̸= ∅, (℘(W ),∩,∪,∅,W ) is a Boolean algebra. This is often
denoted as 2W

▶ Suppose that S ⊆ ℘(W ) is closed under ∩, ∪ and ·. Then (S ,∩,∪,∅,W )
is a Boolean algebra. It is a subalgebra of 2W .

▶ Let S = {X ⊆ N | X is finite or N \ X is finite}. Then
(S ,∪,∩,−,∅,N) is a Boolean algebra.
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Boolean Algebra with Operators

A BAO is a Boolean algebra together with one more more unary
operators f such that f (x ∨ y) = f (x) ∨ f (y) and for the bottom element of
the algebra 0, f (0) = 0.

We often denote the operator f by ‘3’. So, a BAO is a tuple
⟨A,∧,∨,¬, 0, 1,3⟩ where A is a set and all the axioms 1a-8a, 1b-8b are all
satisfied and 3(x ∨ y) = 3x ∨3y and 30 = 0.
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General Frames

General frames/models: ⟨W ,R ,A⟩ where ⟨W ,R⟩ is a frame, and A ⊆ ℘(W ) is
a BAO: Boolean algebra closed under the operator R−1 : ℘(W ) → ℘(W ),
where for all X ,

R−1(X ) = {w | there is a v ∈ X with w R v}.

A general model is a structure ⟨W ,R ,A,V ⟩, where ⟨W ,R ,A⟩ is a general
frame and for all p ∈ At, V (p) ∈ A.

Theorem. Every consistent modal logic is sound and complete with respect to
some class of general frames.
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Fact
The logic KtThoM is consistent.

Consider the general frame F = ⟨N,<,A⟩, where

A = {X | X ⊆ N and X is finite or cofinite}.

We have the following:

▶ F |= GF φ → FG φ, since for every general model based on this frame, the
set of states that make φ true is finite or cofinite

▶ F validates the axioms of KtTho since the underlying frame ⟨N,<⟩
validates the axioms.

▶ F validates KtThoM
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(vB) 23⊤ → 2(2(2p → p) → p)

Let vB be the smallest normal modal logic containing vB .

Theorem (van Benthem, 1979)
The logic vB is incomplete.
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Lemma
Any Kripke frame that validates vB also validates 23⊤ → 2⊥.
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Lemma
23⊤ → 2(2(2p → p) → p) is valid over VB while 23⊤ → 2⊥ is not.
Thus, 23⊤ → 2⊥ ̸∈ vB.
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Definition (van Benthem Frame)
Let VB = ⟨W ,R ,W⟩ where:
1. W = N ∪ {∞,∞ + 1};
2. R = {(∞ + 1,∞), (∞,∞)} ∪ {(∞, n) | n ∈ N} ∪ {(m, n) | m, n ∈

N,m > n};
3. W = {X ⊆ W | X is finite and ∞ ̸∈ X } ∪ {X ⊆ W |

X is cofinite and ∞ ∈ X }

Lemma
23⊤ → 2(2(2p → p) → p) is valid over VB while 23⊤ → 2⊥ is not.
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Incompleteness for Neighborhood Frames

Are all modal logics complete with respect to some class of neighborhood
frames?

No
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Incompleteness for Neighborhood Frames

Are all modal logics complete with respect to some class of neighborhood
frames? No
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Incompleteness
Martin Gerson. The Inadequacy of Neighbourhood Semantics for Modal Logic. Journal of
Symbolic Logic (1975).

There are two logics L and L′ that are incomplete with respect to neighborhood
semantics.
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Incompleteness
Martin Gerson. The Inadequacy of Neighbourhood Semantics for Modal Logic. Journal of
Symbolic Logic (1975).

There are two logics L and L′ that are incomplete with respect to neighborhood
semantics.

L is between T and S4

L′ is above S4 (adapts Fine’s incomplete logic)
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Extra Slides
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Comparing Relational and Neighborhood Semantics

Fact: If a (normal) modal logic is complete with respect to some class of
relational frames then it is complete with respect to some class of neighborhood
frames.

What about the converse?

Are there normal modal logics that are incomplete with respect to relational
semantics, but complete with respect to neighborhood semantics?
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What about the converse?
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Comparing Relational and Neighborhood Semantics

Neighborhood completeness does not imply Kripke completeness

▶ extension of K

D. Gabbay. A normal logic that is complete for neighborhood frames but not for Kripke frames.
Theoria (1975).

▶ extension of T

M. Gerson. A Neighbourhood frame for T with no equivalent relational frame. Zeitschr. J.
Math. Logik und Grundlagen (1976).

▶ extension of S4

M. Gerson. An Extension of S4 Complete for the Neighbourhood Semantics but Incomplete for
the Relational Semantics. Studia Logica (1975).
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W. Holliday and T. Litak. Complete Additivity and Modal Incompleteness. The Review of
Symbolic Logic, 2020.

L. Chagrova. On the Degree of Neighborhood Incompleteness of Normal Modal Logics. AiML
1 (1998).

V. Shehtman. On Strong Neighbourhood Completeness of Modal and Intermediate Propositional
Logics (Part I). AiML 1 (1998).

T. Litak. Modal Incompleteness Revisited. Studia Logica (2004).
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A Kripke frame F = ⟨W ,R⟩ is associated with its dual
F+ = ⟨℘(W ),∩,∪,−,R−1⟩.
Let A = (A,∧,∨,−,⊥,⊤,3) be a BAO.

C: For all X ⊆ A,
∨
X exists and is an element of A

A: Any non-bottom element is above an atom, i.e., minimal non-bottom
element (if a ̸= ⊥, then there is a b ̸= ⊥ such that a > b and for all c if
b > c , then c = ⊥)

V : For all X ⊆ A, if
∨
X exists, then

3
∨

X =
∨
{3x | x ∈ X}

For every Kripke frame F , F+ is a CAV-BAO
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Taking any Kripke frame/CAV-BAO, converting it into its dual
CAV-BAO/Kripke frame, and then going back produces an output isomorphic to
the original input. Therefore, Kripke completeness is just CAV-completeness.

The fact that a normal modal logic is not the logic of any class of Kripke frames
means that it is not the logic of any class of CAV-BAO.

Kripke incompleteness is the phenomenon that not every variety of BAOs can be
generated as the smallest variety containing some class of CAV-BAOs.
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Given that the properties C, A, and V are independent of each other, will
arbitrary combinations of these three lead to distinct notions of completeness,
each more general than Kripke completeness but less general than algebraic
completeness? Or is the propositional modal language too coarse to care about
differences between all or at least some of these semantics?
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W. Holliday and Y. Ding. Another Problem in Possible World Semantics. Proceedings of AiML,
2020.
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Basic modal language: φ := p | ¬φ | (φ ∧ ψ) | 2φ | Qφ
where p ∈ At

Frame: M = ⟨W ,N2,NQ⟩ where W ̸= ∅, N2 : W → ℘(℘(W )) and
NQ : W → ℘(℘(W ))

Model: M = ⟨W ,N2,NQ ,V ⟩ where ⟨W ,N2,NQ⟩ is a frame and
V : At → ℘(W )

Truth:

▶ M,w |= 2φ iff [[φ]]M ∈ N2(w)

▶ M,w |= Qφ iff [[φ]]M ∈ NQ(w)
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A logic L is congruential if it contains all propositional tautologies, is closed
under modus ponens, closed under uniforms substitution and closed under the
congruence rule: if φ ↔ ψ ∈ L, then Oφ ↔ Oψ ∈ L (for each operator O).

35



(Split) p → (3(p ∧Qp) ∧3(p ∧ ¬Qp))

Let S be the smallest congruential modal logic containing Split.

Theorem (Holliday and Ding, 2020) There is no neighborhood frame that
validates S; If a BAO validates S, then it is atomless; The logic S is complete for
a class of neighborhood possibility frames.
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