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Basic modal language L: p | ¬φ | (φ ∧ ψ) | 3φ
where p ∈ At (the set of atomic propositions)

Frame: F = ⟨W ,R⟩ where W ̸= ∅ and R ⊆ W ×W

Model: M = ⟨W ,R ,V ⟩ where ⟨W ,R⟩ is a frame and V : At → ℘(W )

Truth:

▶ M,w |= p iff w ∈ V (p)

▶ M,w |= ¬φ iff M,w ̸|= φ

▶ M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

▶ M,w |= 3φ iff there is a v ∈ W such that wRv and M, v |= φ

F |= φ when for all M based on F and states w , M,w |= φ
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Given a M = ⟨W ,R ,V ⟩, let [[·]]M : L → ℘(W ) be the map where:

[[φ]]M = {w | M,w |= φ}

[[p]]M = V (p)

[[¬φ]]M = W \ [[φ]]M
[[φ ∨ ψ]]M = [[φ]]M ∪ [[ψ]]M
[[φ ∧ ψ]]M = [[φ]]M ∩ [[ψ]]M
[[3φ]]M = R−1([[φ]]M) = {w | there is x ∈ [[φ]]M such that w R x}
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A logic L ⊆ L is a normal modal logic if

▶ L contains all tautologies of classical propositional logic

▶ L is closed under modus ponens

▶ L is closed under uniform substitution

▶ L is closed under necessitation

▶ 2(p → q) → (2p → 2q) ∈ L

Let K be the smallest normal modal logic.

Soundness and Completeness: K is sound and strongly complete with respect to
the class of all frames.
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Basic modal language L: p | ¬φ | (φ ∧ ψ) | 3φ
where p ∈ At (the set of atomic propositions)

Frame: F = ⟨W ,R⟩ where W ̸= ∅ and R ⊆ W ×W

Model: M = ⟨W ,R ,V ⟩ where ⟨W ,R⟩ is a frame and V : At → ℘(W )

▶ Are there other languages that can be interpreted on these relational
models? First-order language, Second-order language, etc.

▶ Are there other semantics for the basic modal language?
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Non-normal modal logics
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Non-normal modal logics
(M) 2(φ ∧ ψ) → 2φ ∧2ψ

(C ) (2φ ∧2ψ) → 2(φ ∧ ψ)

(N) 2⊤

(K ) 2(φ → ψ) → (2φ → 2ψ)

(Dual) 2φ ↔ ¬3¬φ

(Nec) from ⊢ φ infer ⊢ 2φ

(Re) from ⊢ φ ↔ ψ infer ⊢ 2φ ↔ 2ψ
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Logical Omniscience/Knowledge Closure

RM From φ → ψ, infer 2φ → 2ψ
closure under logical implication

K 2(φ → ψ) → (2φ → 2ψ)
closure under known implication

Nec From φ, infer 2φ
knowledge of all logical validities

RE From φ ↔ ψ, infer 2φ ↔ 2ψ
closure under logical equivalence
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Logics of High Probability

2φ means “φ is assigned ‘high’ probability”, where high means above some
threshold r ∈ [0, 1].

Claim: Mon (from φ → ψ infer 2φ → 2ψ) is a valid rule of inference.

Claim: (2φ ∧2ψ) → 2(φ ∧ ψ) is not valid.

H. Kyburg and C.M. Teng. The Logic of Risky Knowledge. Proceedings of WoLLIC (2002).

A. Herzig. Modal Probability, Belief, and Actions. Fundamenta Informaticae (2003).
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Deontic Logic

2φ mean “it is obliged that φ.”

φ → ψ
2φ → 2ψ

J. Forrester. Paradox of Gentle Murder. 1984.

L. Goble. Murder Most Gentle: The Paradox Deepens. 1991.
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Deontic Logic

2φ mean “it is obliged that φ.”

1. Jones murders Smith

✗ Jones ought not to murder Smith

3. If Jones murders Smith, then Jones ought to murder Smith gently

4. Jones ought to murder Smith gently

5. If Jones murders Smith gently, then Jones murders Smith.

6. If Jones ought to murder Smith gently, then Jones ought to murder Smith

✗ Jones ought to murder Smith

J. Forrester. Paradox of Gentle Murder. 1984.

L. Goble. Murder Most Gentle: The Paradox Deepens. 1991.
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Abilities

Abli φ: i has the ability to see to it that φ is true
(alternatively, i has the ability to bring about φ)

What are the core logical principles?

1. Abli φ → φ (or φ → Abli φ)

2. ¬Abli⊤

3. (Abli φ ∧ Abliψ) → Abli (φ ∧ ψ)

4. Abli (φ ∨ ψ) → (Abli φ ∨ Abliψ)

5. Abli (φ ∧ ψ) → (Abli φ ∧ Abliψ)

6. AbliAblj φ → Abli φ, AbliAbli φ → Abli φ
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Games: (Abli φ ∧ Abliψ) ̸→ Abli(φ ∧ ψ)
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As1

Bs2 B s3

p p, q p, q q

p p, q

s1 |= AblAp

p, q q

s1 |= AblAp ∧ AblAq

p, q p, q

s1 |= AblAp ∧ AblAq ∧ ¬AblA(p ∧ q)
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Games: (Abli φ ∧ Abliψ) ̸→ Abli(φ ∧ ψ)

R. Parikh (1985). The Logic of Games and its Applications. Annals of Discrete Mathematics.

M. Pauly and R. Parikh (2003). Game Logic — An Overview. Studia Logica.

J. van Benthem (2014). Logic in Games. The MIT Press.
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φ ̸→ Abli φ

Suppose an agent (call her Ann) is throwing a dart and she is not a very good
dart player, but she just happens to throw a bull’s eye.

Intuitively, we do not want to say that Ann has the ability to throw a bull’s eye
even though it happens to be true.
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Abli(φ ∨ ψ) ̸→ Abli φ ∨ Abliψ

Continuing with this example, suppose that Ann has the ability to hit the dart
board, but has no other control over the placement of the dart.

Now, when she throws the dart, as a matter of fact, it will either hit the top half
of the board or the bottom half of the board.

Since, Ann has the ability to hit the dart board, she has the ability to either hit
the top half of the board or the bottom half of the board.

However, intuitively, it seems true that Ann does not have the ability to hit the
top half of the dart board, and also she does not have the ability to hit the
bottom half of the dart board.
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Abilities

Abli φ: agent i has the ability to bring about (see to it that) φ is true

What are core logical principles? Depends very much on the intended
“application” and how actions are represented...

1. Abli φ → φ (or φ → Abli φ)

2. ¬Abli⊤

3. (Abli φ ∧ Abliψ) → Abli (φ ∧ ψ)

4. Abli (φ ∨ ψ) → (Abli φ ∨ Abliψ)

5. Abli (φ ∧ ψ) → (Abli φ ∧ Abliψ)
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On the Logic of Ability

¬Abli⊤

2⊤ is valid in the class of all frames, 3⊤ is valid on the class of serial frames

φ → Abli φ

φ → 3φ is valid in the class of reflexive frames

(Abli φ ∧ Abliψ) → Abli (φ ∧ ψ)

(2φ ∧2ψ) → 2(φ ∧ ψ) is valid in the class of all frames

Abli (φ ∨ ψ) → (Abli φ ∨ Abliψ)

3(φ ∨ ψ) → (3φ ∨3ψ) is valid in the class of all frames
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M. Brown. On the Logic of Ability. Journal of Philosophical Logic, Vol. 17, pp. 1 - 26, 1988.

D. Elgesem. The modal logic of agency. Nordic Journal of Philosophical Logic 2(2), 1 - 46,
1997.

G. Governatori and A. Rotolo. On the Axiomatisation of Elgesem’s Logic of Agency and Ability.
Journal of Philosophical Logic, 34, pgs. 403 - 431 (2005).
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A Minimal Logic of Abilities

C φ means “the agent is capable of realizing φ”

E φ means “the agent does bring about φ”

1. All propositional tautologies

2. ¬C⊤
3. E φ ∧ Eψ → E (φ ∧ ψ)

4. E φ → φ

5. E φ → C φ

6. Modus Ponens plus from φ ↔ ψ infer E φ ↔ Eψ and from φ ↔ ψ infer
C φ ↔ Cψ
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Neighborhood Semantics for Modal Logic
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w

v1 v2 v3
[[φ]]M

M,w |= 2φ iff R(w) ⊆ [[φ]]M

...the neighborhood of w is
contained in the truth-set of φ
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w

v1 v2 v3
[[φ]]M

M,w |= ⊞φ iff R(w) = [[φ]]M

...the neighborhood of w is the
truth-set of φ
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w |= 2φ if the truth set of φ is a neighborhood of w

neighborhood in some topology.
J. McKinsey and A. Tarski. The Algebra of Topology. 1944.

contains all the immediate neighbors in some graph
S. Kripke. A Semantic Analysis of Modal Logic. 1963.

an element of some distinguished collection of sets
D. Scott. Advice on Modal Logic. 1970.

R. Montague. Pragmatics. 1968.
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w

M,w |= 2φ iff there is a
neighborhood contained in [[φ]]M
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[[φ]]M

w

M,w |= 2φ iff there is a
neighborhood of w contained in

[[φ]]M
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Relational model: ⟨W ,R ,V ⟩ where R : W → ℘(W )

w |= 2φ iff R(w) ⊆ [[φ]]

Neighborhood model: ⟨W ,N ,V ⟩ where N : W → ℘(℘(W ))

w |= 2φ iff there is a X ∈ N(w) such that X ⊆ [[φ]]
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[[φ]]M

w

M,w |= 2φ iff [[φ]]M is a
neighborhood of w
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[[φ]]M

w

M,w |= 2φ iff [[φ]]M is a
neighborhood of w
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Relational model: ⟨W ,R ,V ⟩ where R : W → ℘(W )

w |= 2φ iff R(w) ⊆ [[φ]]

Neighborhood model: ⟨W ,N ,V ⟩ where N : W → ℘(℘(W ))

w |= 2φ iff [[φ]] ∈ N(w)

w |= ⟨ ]φ iff there is a X ∈ N(w) such that X ⊆ [[φ]]
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Neighborhood Frames

Let W be a non-empty set of states.

Any function N : W → ℘(℘(W )) is called a neighborhood function

A pair ⟨W ,N⟩ is a called a neighborhood frame if W a non-empty set and N is a
neighborhood function.

A neighborhood model based on F = ⟨W ,N⟩ is a tuple ⟨W ,N ,V ⟩ where
V : At → ℘(W ) is a valuation function.

22



Truth in a Model

▶ M,w |= p iff w ∈ V (p)

▶ M,w |= ¬φ iff M,w ̸|= φ

▶ M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

▶ M,w |= 2φ iff [[φ]]M ∈ N(w)

▶ M,w |= 3φ iff W − [[φ]]M ̸∈ N(w)

where [[φ]]M = {w | M,w |= φ}.
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Let N : W → ℘℘W be a neighborhood function and define mN : ℘W → ℘W :

for X ⊆ W , mN(X ) = {w | X ∈ N(w)}

1. [[p]]M = V (p) for p ∈ At

2. [[¬φ]]M = W − [[φ]]M
3. [[φ ∧ ψ]]M = [[φ]]M ∩ [[ψ]]M
4. [[2φ]]M = mN([[φ]]M)

5. [[3φ]]M = W −mN(W − [[φ]]M)

24



Detailed Example

Suppose W = {w , s, v} is the set of states and define a neighborhood model
M = ⟨W ,N ,V ⟩ as follows:
▶ N(w) = {{s}, {v}, {w , v}}
▶ N(s) = {{w , v}, {w}, {w , s}}
▶ N(v) = {{s, v}, {w},∅}

Further suppose that V (p) = {w , s} and V (q) = {s, v}.

w s v

{s} {v} {w , v} {w , s} {w} {s, v} ∅
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