Modal Logic: Logics of Knowledge and Belief

Eric Pacuit, University of Maryland

November 15, 2023

- The agent's (hard) information (i.e., the states consistent with what the agent knows)
- The agent's beliefs (soft information—-the states consistent with what the agent believes)

- The agent's beliefs (soft information—-the states consistent with what the agent believes)
- The agent's "contingency plan": when the stronger beliefs fail, go with the weaker ones.

The agent's beliefs (soft information—-the states consistent with what the agent believes)

The agent's "contingency plan": when the stronger beliefs fail, go with the weaker ones.

Sphere Models

Sphere Models

Let W be a set of states, A system of spheres $\mathcal{F} \subseteq \wp(W)$ such that:

- ▶ For each *S*, $S' \in \mathcal{F}$, either $S \subseteq S'$ or $S' \subseteq S$
- For any P ⊆ W there is a smallest S ∈ F (according to the subset relation) such that P ∩ S ≠ Ø
- The spheres are non-empty ∩ 𝔅 ≠ ∅ and cover the entire information cell ∪ 𝔅 = 𝔅 (or [w] = {v | w ∼ v})

Let \mathcal{F} be a system of spheres on W: for $w, v \in W$, let

 $w \preceq_{\mathcal{F}} v$ iff for all $S \in \mathcal{F}$, if $v \in S$ then $w \in S$

Then, $\leq_{\mathcal{F}}$ is reflexive, transitive, and well-founded.

 $w \leq_{\mathcal{F}} v$ means that: no matter what the agent learns in the future, as long as world v is still consistent with her beliefs and w is still epistemically possible, then w is also consistent with her beliefs.

Epistemic Models: $\mathcal{M} = \langle W, \{\sim_i\}_{i \in Agt}, V \rangle$

Truth: \mathcal{M} , $w \models \varphi$ is defined as follows:

Epistemic-Plausibility Models: $\mathcal{M} = \langle W, \{\sim_i\}_{i \in Agt}, \{\preceq_i\}_{i \in Agt}, V \rangle$

Truth: \mathcal{M} , $w \models \varphi$ is defined as follows:

Epistemic-Plausibility Models: $\mathcal{M} = \langle W, \{\sim_i\}_{i \in \text{Agt}}, \{\preceq_i\}_{i \in \text{Agt}}, V \rangle$

Plausibility Relation: $\preceq_i \subseteq W \times W$. $w \preceq_i v$ means

"w is at least as plausible as v."

Epistemic-Plausibility Models: $\mathcal{M} = \langle W, \{\sim_i\}_{i \in Agt}, \{\preceq_i\}_{i \in Agt}, V \rangle$

Plausibility Relation: $\preceq_i \subseteq W \times W$. $w \preceq_i v$ means "*w* is at least as plausible as *v*."

Properties of \leq_i : reflexive, transitive, and *well-founded*.

Epistemic-Plausibility Models: $\mathcal{M} = \langle W, \{\sim_i\}_{i \in Agt}, \{\preceq_i\}_{i \in Agt}, V \rangle$

Plausibility Relation: $\preceq_i \subseteq W \times W$. $w \preceq_i v$ means "*w* is at least as plausible as *v*."

Properties of \leq_i : reflexive, transitive, and *well-founded*.

Most Plausible: For $X \subseteq W$, let

$$Min_{\leq i}(X) = \{ v \in W \mid v \leq_i w \text{ for all } w \in X \}$$

Epistemic-Plausibility Models: $\mathcal{M} = \langle W, \{\sim_i\}_{i \in Agt}, \{\preceq_i\}_{i \in Agt}, V \rangle$

Plausibility Relation: $\preceq_i \subseteq W \times W$. $w \preceq_i v$ means "*w* is at least as plausible as *v*."

Properties of \leq_i : reflexive, transitive, and *well-founded*.

Most Plausible: For $X \subseteq W$, let $Min_{\preceq_i}(X) = \{ v \in W \mid v \preceq_i w \text{ for all } w \in X \}$

Assumptions:

- 1. plausibility implies possibility: if $w \leq_i v$ then $w \sim_i v$.
- 2. *locally-connected*: if $w \sim_i v$ then either $w \preceq_i v$ or $v \preceq_i w$.

Epistemic-Plausibility Models: $\mathcal{M} = \langle W, \{\sim_i\}_{i \in \text{Agt}}, \{\preceq_i\}_{i \in \text{Agt}}, V \rangle$

Truth: $\mathcal{M}, w \models \varphi$ is defined as follows:

▶
$$W = \{w_1, w_2, w_3\}$$

 \blacktriangleright $W = \{w_1, w_2, w_3\}$ \blacktriangleright $w_1 \preceq w_2$ and $w_2 \preceq w_1$ (w_1 and w_2 are equi-plausbile) \blacktriangleright $w_1 \prec w_3$ ($w_1 \prec w_3$ and $w_3 \not\preceq w_1$) \blacktriangleright $w_2 \prec w_3$ ($w_2 \preceq w_3$ and W3 × W2)

• <i>W</i> 3	
• <i>W</i> ₁	• <i>W</i> ₂

W = {w₁, w₂, w₃}
w₁ ≤ w₂ and w₂ ≤ w₁ (w₁ and w₂ are equi-plausbile)
w₁ ≺ w₃ (w₁ ≤ w₃ and w₃ ∠ w₁)
w₂ ≺ w₃ (w₂ ≤ w₃ and w₃ ∠ w₂)
{w₁, w₂} ⊂ Min_≺([w_i])

• <i>W</i> 3	
• <i>W</i> ₁	• <i>W</i> 2

Conditional Belief: $B^{\varphi}\psi$

Conditional Belief: $B^{\varphi}\psi$

 $\mathit{Min}_{\preceq}(\llbracket \varphi \rrbracket_{\mathcal{M}}) \subseteq \llbracket \psi \rrbracket_{\mathcal{M}}$

Example

Example

 $\blacktriangleright w_1 \models B_a(H_1 \land H_2) \land B_b(H_1 \land H_2)$

Example

$$w_1 \models B_a(H_1 \land H_2) \land B_b(H_1 \land H_2)$$

$$w_1 \models B_a^{T_1} H_2$$

$$w_1 \models B_b^{T_1} T_2$$

Suppose that *w* is the current state.

► Belief (*BP*)

- ► Belief (*BP*)
- **Robust Belief** $([\preceq]P)$

- ► Belief (*BP*)
- **Robust Belief** $([\leq]P)$
- **Strong Belief** $(B^{s}P)$

- ► Belief (*BP*)
- **Robust Belief** $([\leq]P)$
- ► Strong Belief (B^sP)
- Knowledge (KP)

Is $B \phi
ightarrow B^\psi \phi$ valid?

Is $B \phi
ightarrow B^\psi \phi$ valid?

Is
$$B^{lpha} \varphi o B^{lpha \wedge eta} \varphi$$
 valid?

Is $B \phi \to B^{\psi} \phi$ valid?

Is
$$B^{lpha} \varphi o B^{lpha \wedge eta} \varphi$$
 valid?

Is $B\varphi \to B^{\psi}\varphi \vee B^{\neg\psi}\varphi$ valid?

Is $B\phi \to B^{\psi}\phi$ valid?

Is
$$B^{lpha} \varphi o B^{lpha \wedge eta} \varphi$$
 valid?

Is
$$B \phi \to B^{\psi} \phi \vee B^{\neg \psi} \phi$$
 valid?

Exercise: Prove that B, B^{φ} and B^s are definable in the language with K and $[\preceq]$ modalities.

$$\mathcal{M}, w \models B^{\varphi}\psi$$
 if for each $v \in Min_{\leq}([w] \cap \llbracket \varphi \rrbracket), \mathcal{M}, v \models \varphi$
where $\llbracket \varphi \rrbracket = \{w \mid \mathcal{M}, w \models \varphi\}$ and $[w] = \{v \mid w \sim v\}$

$$\mathcal{M}, w \models B^{\varphi}\psi$$
 if for each $v \in Min_{\preceq}([w] \cap \llbracket \varphi \rrbracket)$, $\mathcal{M}, v \models \varphi$
where $\llbracket \varphi \rrbracket = \{w \mid \mathcal{M}, w \models \varphi\}$ and $[w] = \{v \mid w \sim v\}$

Core Logical Principles:

- 1. $B^{\varphi} \varphi$
- 2. $B^{\varphi}\psi \to B^{\varphi}(\psi \lor \chi)$ 3. $(B^{\varphi}\psi_1 \land B^{\varphi}\psi_2) \to B^{\varphi}(\psi_1 \land \psi_2)$ 4. $(B^{\varphi_1}\psi \land B^{\varphi_2}\psi) \to B^{\varphi_1\lor\varphi_2}\psi$ 5. $(B^{\varphi}\psi \land B^{\psi}\varphi) \to (B^{\varphi}\chi \leftrightarrow B^{\psi}\chi)$

J. Burgess. *Quick completeness proofs for some logics of conditionals.* Notre Dame Journal of Formal Logic 22, 76 – 84, 1981.

Types of Beliefs: Logical Characterizations

•
$$\mathcal{M}, w \models K_i \varphi$$
 iff $\mathcal{M}, w \models B_i^{\psi} \varphi$ for all ψ

i knows φ iff *i* continues to believe φ given any new information

Types of Beliefs: Logical Characterizations

•
$$\mathcal{M}, w \models K_i \varphi$$
 iff $\mathcal{M}, w \models B_i^{\psi} \varphi$ for all ψ
i knows φ iff *i* continues to believe φ given any new information

•
$$\mathcal{M}, w \models [\preceq_i] \varphi$$
 iff $\mathcal{M}, w \models B_i^{\psi} \varphi$ for all ψ with $\mathcal{M}, w \models \psi$.
i robustly believes φ iff *i* continues to believe φ given any true formula.

Types of Beliefs: Logical Characterizations

•
$$\mathcal{M}, w \models K_i \varphi$$
 iff $\mathcal{M}, w \models B_i^{\psi} \varphi$ for all ψ
i knows φ iff *i* continues to believe φ given any new information

•
$$\mathcal{M}, w \models [\preceq_i] \varphi$$
 iff $\mathcal{M}, w \models B_i^{\psi} \varphi$ for all ψ with $\mathcal{M}, w \models \psi$.
i robustly believes φ iff *i* continues to believe φ given any true formula.

•
$$\mathcal{M}, w \models B_i^s \varphi$$
 iff $\mathcal{M}, w \models B_i \varphi$ and $\mathcal{M}, w \models B_i^{\psi} \varphi$ for all ψ with $\mathcal{M}, w \models \neg K_i(\psi \rightarrow \neg \varphi)$.
i strongly believes φ iff *i* believes φ and continues to believe φ given any evidence (truthful or not) that is not known to contradict φ .

 $\begin{array}{lll} Success: & B_{i}^{\varphi}\varphi\\ Knowledge \ entails \ belief & K_{i}\varphi \rightarrow B_{i}^{\psi}\varphi\\ Full \ introspection: & B_{i}^{\varphi}\psi \rightarrow K_{i}B_{i}^{\varphi}\psi \quad \text{and} \quad \neg B_{i}^{\varphi}\psi \rightarrow K_{i}\neg B_{i}^{\varphi}\psi \end{array}$

Success: $B_i^{\varphi} \varphi$ Knowledge entails belief $K_i \varphi$ Full introspection: $B_i^{\varphi} \psi$ Cautious Monotonicity: (B_i^{φ}) Rational Monotonicity: (B_i^{φ})

$$B_{i}^{\varphi}\varphi$$

$$K_{i}\varphi \to B_{i}^{\psi}\varphi$$

$$B_{i}^{\varphi}\psi \to K_{i}B_{i}^{\varphi}\psi \text{ and } \neg B_{i}^{\varphi}\psi \to K_{i}\neg B_{i}^{\varphi}\psi$$

$$(B_{i}^{\varphi}\alpha \wedge B_{i}^{\varphi}\beta) \to B_{i}^{\varphi\wedge\beta}\alpha$$

$$(B_{i}^{\varphi}\alpha \wedge \neg B_{i}^{\varphi}\neg\beta) \to B_{i}^{\varphi\wedge\beta}\alpha$$

Success: $B_i^{\varphi} \varphi$ Knowledge entails belief $K_i \varphi$ Full introspection: $B_i^{\varphi} \psi$ Cautious Monotonicity: (B_i^{φ}) Rational Monotonicity: (B_i^{φ})

$$B_{i}^{\varphi}\varphi$$

$$K_{i}\varphi \to B_{i}^{\psi}\varphi$$

$$B_{i}^{\varphi}\psi \to K_{i}B_{i}^{\varphi}\psi \text{ and } \neg B_{i}^{\varphi}\psi \to K_{i}\neg B_{i}^{\varphi}\psi$$

$$(B_{i}^{\varphi}\alpha \wedge B_{i}^{\varphi}\beta) \to B_{i}^{\varphi\wedge\beta}\alpha$$

$$(B_{i}^{\varphi}\alpha \wedge \neg B_{i}^{\varphi}\neg\beta) \to B_{i}^{\varphi\wedge\beta}\alpha$$