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The “Problem” of Logical Omniscience

The rule

RKi
(φ1 ∧ · · · ∧ φm) → ψ

(Ki φ1 ∧ · · · ∧ Ki φm) → Kiψ

reflects so-called (synchronic) logical omniscience: the agent knows (at time t)
all the consequences of what she knows (at t).

Given this, there are two ways to view Ki : as representing either the idealized
(implicit, “virtual”) knowledge of ordinary agents, or the ordinary knowledge of
idealized agents. For discussion, see

R. Stalnaker (1991). The Problem of Logical Omniscience, I. Synthese.

R. Stalnaker (2006). On Logics of Knowledge and Belief. Philosophical Studies.
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The “Problem” of Logical Omniscience

The rule

RKi
(φ1 ∧ · · · ∧ φm) → ψ

(Ki φ1 ∧ · · · ∧ Ki φm) → Kiψ

reflects so-called (synchronic) logical omniscience: the agent knows (at time t)
all the consequences of what she knows (at t).

There is now a large literature on alternative frameworks for representing the
knowledge of agents with bounded rationality, who do not always “put two and
two together” and therefore lack the logical omniscience reflected by RKi . See,
for example:

J. Y. Halpern and R. Pucella. 2011. Dealing with Logical Omniscience: Expressiveness and
Pragmatics. Artificial Intelligence.
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Logical Omniscience

▶ From φ ↔ ψ infer Ki φ ↔ Kiψ

▶ From φ → ψ infer Ki φ → Kiψ

▶ (Ki (φ → ψ) ∧ Ki φ) → Kiψ

▶ From φ infer Ki φ

▶ Ki⊤

▶ (Ki φ ∧ Kiψ) → Ki (φ ∧ ψ)
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Dealing with Logical Omniscience

▶ Syntactic approaches: an agent’s knowledge is represented by a set of
formulas (intuitively, the set of formulas she knows);

▶ Awareness: an agent knows φ if she is aware of φ and φ is true in all the
worlds she considers possible;

▶ Algorithmic knowledge: an agent knows φ if her knowledge algorithm
returns “Yes” on a query of φ; and

▶ Impossible worlds: an agent may consider possible worlds that are logically
inconsistent (for example, where p and ¬p may both be true).

Non-Normal Modal Logics
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Dealing with Logical Omniscience

▶ Syntactic approaches: M,w |= Ki φ iff φ ∈ Ci (w)

▶ Awareness structures: M,w |= Ki φ iff for all v ∈ W , if wRiv then
M, v |= φ and φ ∈ Ai (w)

▶ Algorithmic knowledge: M,w |= Ki φ iff Ai (w , φ) = Yes

▶ Impossible worlds: M,w |= Ki φ iff if w ∈ N , then for all v ∈ W , if wRiv
and v ∈ N then M, v |= φ; and if w ̸∈ N , then φ ∈ Ci (w)
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Justification Logic (1)

t : φ: “t is a justification/proof for φ”

S. Artemov and M. Fitting (2019). Justification Logic: Reasoning with Reasons. Cambridge
University Press.

S. Artemov and M. Fitting (2020). Justification logic. The Stanford Encyclopedia of Philosophy.

S. Artemov. Explicit provability and constructive semantics (2001). The Bulletin of Symbolic
Logic 7, pp. 1 - 36.

M. Fitting (2005). The logic of proofs, semantically. Annals of Pure and Applied Logic 132, pp.
1 - 25.
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Justification Logic (2)

t := c | x | t + s | !t |t · s
φ := p | φ ∧ ψ | ¬φ | t : φ

Justification Logic:

▶ t : φ → φ

▶ t : (φ → ψ) → (s : φ → t · s : ψ)

▶ t : φ → (t + s) : φ

▶ t : φ → (s + t) : φ

▶ t : φ →!t : t : φ

Internalization: if ⊢JL φ then there is a proof polynomial t such that ⊢JL t : φ

Realization Theorem: if ⊢S4 φ then there is a proof polynomial t such that
⊢JL t : φ
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Justification Logic (3)

Fitting Semantics: M = ⟨W ,R , E ,V ⟩
▶ W ̸= ∅
▶ R ⊆ W ×W

▶ E : W × ProofTerms → ℘(LJL)

▶ V : At → ℘(W )

M,w |= t : φ iff for all v , if wRv then M, v |= φ and φ ∈ E(w , t)
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Justification Logic (3)

Monotonicity For all w , v ∈ W , if wRv then for all proof polynomials t,
E(w , t) ⊆ E(v , t).

Application For all proof polynomials s, t and for each w ∈ W , if
φ → ψ ∈ E(w , t) and φ ∈ E(w , s), then ψ ∈ E(w , t · s)

Proof Checker For all proof polynomials t and for each w ∈ W , if φ ∈ E(w , t),
then t : φ ∈ E(w , !t).

Sum For all proof polynomials s, t and for each w ∈ W ,
E(w , s) ∪ E(w , t) ⊆ E(w , s + t).
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Doxastic Logic: Models

Model: ⟨W ,R ,V ⟩

States/possible worlds: W ̸= ∅

Quasi-partitions: R ⊆ W ×W is serial, transitive and Euclidean

▶ serial: for all w ∈ W , there is a v ∈ W such that w R v

▶ transitive: for all w , v , u ∈ W , if w R v and v R u, then w R u

▶ Euclidean: for all w , v , u ∈ W , if w R v and w R u, then v R u

Valuation function: V : At → ℘(W ), where At is a set of atomic propositions.
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Doxastic Logic: Language and Semantics

p | φ ∧ φ | ¬φ | Bφ

Boolean connectives:

▶ M,w |= p iff w ∈ V (p)

▶ M,w |= ¬φ iff it is not the case that M,w |= φ

▶ M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

Belief operators: M,w |= Bφ iff for all v , if w R v , then M, v |= φ.

Belief operator: M,w |= Bφ iff R(w) ⊆ [[φ]]M

{v | w R v} {v | M,w |= φ}
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Doxastic Logic: KD45

K B(φ → ψ) → (Bφ → Bψ)

D Bφ → ¬B¬φ

4 Bφ → BBφ

5 ¬Bφ → B¬Bφ

The logic KD45 adds the above axiom schemes to an axiomatization of classical
propositional logic with the rules Modus Ponens, Substitution of Equivalents, and
Necessitation (from φ infer Bφ).

KD45 is sound and strongly complete with respect to all quasi-partition frames.
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Exercise: Show that the following axiom schemes and rules are valid on
quasi-partition models and are theorems of KD45:

▶ agglomeration: (Bφ ∧ Bψ) → B(φ ∧ ψ)

▶ consistency: ¬B⊥

▶ monotonicity: From φ → ψ infer Bφ → Bψ

▶ secondary-reflexivity: for all w , v ∈ W , if w R v then v R v
B(Bφ → φ)

▶ correctness of own beliefs:
B¬Bφ → ¬Bφ
for all w , there is a v such that w R v and for all z if v R z then w R z

BBφ → Bφ
density: for all w and v if w R v then there is a z such that w R z and z R v
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P

w

¬P
v

Ann does not know that P , but she believes that ¬P
is true to degree r .
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¬P
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r1− r

Ann does not know that P , but she believes that ¬P
is true to degree r .
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Combining Logics of Knowledge and Belief

M = ⟨W ,∼,R ,V ⟩ where
▶ W ̸= ∅ is a set of states;

▶ each ∼ is an equivalence relation on W ;

▶ each R is a serial, transitive, Euclidean relation on W ; and

▶ V is a valuation function.

What is the relationship between knowledge (K ) and believe (B)?

▶ K is S5

▶ B is KD45

▶ K φ → Bφ? “knowledge implies belief”

▶ Bφ → BK φ? “positive certainty”

▶ Bφ → KBφ? “strong introspection”
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An Issue - Negative Introspection and Positive Certainty

▶ Suppose that p is something you are certain of (you believe it with
probability one), but is false: ¬p ∧ Bp

▶ Bp → BKp

▶ ¬p → ¬Kp → K¬Kp → B¬Kp

▶ So, BKp ∧ B¬Kp also holds, but this contradictions Bφ → ¬B¬φ.
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